• Title/Summary/Keyword: physics concept

Search Result 219, Processing Time 0.029 seconds

Conceptual design of a dual drum-controlled space molten salt reactor (D2 -SMSR): Neutron physics and thermal hydraulics

  • Yongnian Song;Nailiang Zhuang;Hangbin Zhao;Chen Ji;Haoyue Deng;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2315-2324
    • /
    • 2023
  • Space nuclear reactors are becoming popular in deep space exploration owing to their advantages of high-power density and stability. Following the fourth-generation nuclear reactor technology, a conceptual design of the dual drum-controlled space molten salt reactor (D2-SMSR) is proposed. The reactor concept uses molten salt as fuel and heat pipes for cooling. A new reactivity control strategy that combines control drums and safety drums was adopted. Critical physical characteristics such as neutron energy spectrum, neutron flux distribution, power distribution and burnup depth were calculated. Flow and heat transfer characteristics such as natural convection, velocity and temperature distribution of the D2-SMSR under low gravity conditions were analyzed. The reactivity control effect of the dual-drums strategy was evaluated. Results showed that the D2-SMSR with a fast spectrum could operate for 10 years at the full power of 40 kWth. The D2-SMSR has a high heat transfer coefficient between molten salt and heat pipe, which means that the core has a good heat-exchange performance. The new reactivity control strategy can achieve shutdown with one safety drum or three control drums, ensuring high-security standards. The present study can provide a theoretical reference for the design of space nuclear reactors.

A Study on XR Technology for Digital Twin of Smart Factory (스마트 공장의 디지털 트윈을 위한 XR기술에 관한 연구)

  • Soek-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.1-9
    • /
    • 2024
  • The introduction of smart factory digital twins is a concept that has already been proposed to increase productivity in the manufacturing industry through CPS(Cyber Physics System), and has been applied to specific industrial process stages or partially introduced in stages where simulation is required. However, with the recent development of the 4th Industrial Revolution technology, it is receiving attention again along with XR (Extended Reality) technology. However, because there are not many effective cases, this study analyzed the devices, equipment, and technology of the manufacturing process to build a digital twin applying digital threads and synchronized signals and information to control, remote control, and produce intelligent process automation equipment. A platform capable of analyzing information was proposed and developed. Through this, we designed and built an XR content service platform that can support artificial intelligence and developed it to enable control, remote control, and analysis of production information. A possible platform was proposed and developed. We hope that this study will be helpful in conducting research on many cases, and in the future, expanded research on increasing productivity in each part of the process and production is needed through intelligent models.

Brain Death and Heart Transplantation in Korea: A Questionnaire Survey (한국에서의 심장이식수술 - 설문조사를 중심으로 -)

  • Lee, Hyeong-Gyo;Kim, Won-Gon;Yu, Se-Yeong
    • Journal of Chest Surgery
    • /
    • v.23 no.6
    • /
    • pp.1204-1212
    • /
    • 1990
  • Recent social and medical developments have significantly changed both the concept of death and the criteria for its pronouncement. Instead of considering. the heart as central to the determination for death, it is now prevalent to use death of the brain as adequate for death regardless of cardiac function in most western countries. But the brain death theory is not yet legally accepted despite growing public interest in our country due mainly to customary and moral reasons. Subsequently heart transplantation, which necessitates the concept of brain death, still remains a possible surgical entity in the future. As a part of endeavor the evaluate social atmosphere for the legal acceptance of the concept of brain death and the availability of potential heart donors, a four-page questionnaire on brain death and cardiac transplantation was given to the sophomore students of a medical college in Seoul[n=116, group I] and their family members[n=83, group II ]. The groups were chosen under the assumptions that they lacked sophisticated medical knowledge but had general medical interest so reliable data could be obtained. The majority of respondents in both group I and II thought that they knew the concept of brain death[group I 99.1%, group II 93.3%] and the definition of heart transplantation[group I 94%, group II 67.6%] at least to some extent, but only a small proportion of them was proven to have correct knowledge: brain death[74.4%, group II 39. 8%], heart transplantation[group I 31.9%, group II 30.1%]. Most respondents answered in the affirmative for the legal approval of brain death[group I 87.8%, group Il 97.9%]. The possibility of medical usage of brain dead organs was the biggest reason for brain death[group I 52.9%, group Il 47.9%]. Ninety-one percent of group I and 89.1 percent of group II responded that they were willing to give permission for donating the heart of brain-dead family members. Fifty-nine percent of group I and 51.9 percent of group II wanted their own heart donated. These results suggest, despite some inherent sampling limitations, that favorable responses to brain death and heart transplantation can be obtained among the general public if they are properly informed.

  • PDF

A Study on Design of Evolving Hardware using Field Programmable Gate Array (FPGA를 이용한 진화형 하드웨어 설계 및 구현에 관한 연구)

  • 반창봉;곽상영;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.426-432
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system using evolving hardware concept. This system is a living creatures'brain based on artificial life techniques. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogney of natural living things. The phylogenetic mechanism are fundamentally non-deterministic, with the mutation and recombination rate providing a major source of diversity. Ontogeny is deterministic and local physics. Cellular automata is developed from initial cells, and evaluated in given environment. And genetic algorithms take a part in adaptation process. In this paper we implement this system using evolving hardware concept. Evolving hardware is reconfigurable hardware whose configuration si under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system if verified by applying it to Exclusive-OR.

  • PDF

The Study of the Process of Design on the Application of the Architectural Field Concept (건축장 개념을 적용한 설계과정 연구)

  • Lee, Seung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3698-3703
    • /
    • 2012
  • The architectural design process is consisted of the phase of programming and the phase of the design. The contemporary architectural scheme, as a datascape, a rhizome structure and a diagram, is based on the concept of modern physics. And it is applied on the phase of design by synthesizing data. Like this, the design of the architectural field is accomplished in the phase of design. For design of the architectural field, the characteristics of the architectural field is considered as the viewpoint of design in the procedure. First, according to the area which is defined by relations of environments, around architectures and so on, the net system of relations is designed as area. Second, design the linkage between building and space, building and building, space and space, according to the correspondence each other. Third, design the method or form of connecting building and space to one as a building and a space are no longer divided but are understood by one. As a result, for the design of architectural field, it is necessary to define the criteria by the characteristics of architectural field and the architectural field is designed by process.

Physical Modelling for Consistent Reasonable Thought and Stock-Price Flow Patterns (합리적 생각의 물리적 모델링과 주가 흐름 패턴 분석)

  • Park, Sangup
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1364-1373
    • /
    • 2018
  • A recognizable form having meaning is called a sign in semiotics. The sign is transformed into a physical counter form in this work. Its internal structure is restricted on the linguistic concept structure. We borrow the concept of a mathematical function from the utility function of a rational personal in the economy. Universalizing the utility function by introducing the consistency of independency on the manner of construction, we construct the probability. We introduce a random variable for the probability and join it to a position variable. Thus, we propose a physical sign and its serial changes in the forms of stochastic equations. The equations estimate three patterns (jumping, drifting, diffusing) of possible solutions, and we find them in the one-day stock-price flow. The periods of jumping, drifting and diffusing were about 2, 3.5, and 6 minutes for the Kia stock on 11/05/2014. Also, the semiotic sign (icon, index, symbol) can be expected from the equations.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

Bacterial Logic Devices Reveal Unexpected Behavior of Frameshift Suppressor tRNAs

  • Sawyer, Eric M.;Barta, Cody;Clemente, Romina;Conn, Michel;Davis, Clif;Doyle, Catherine;Gearing, Mary;Ho-Shing, Olivia;Mooney, Alyndria;Morton, Jerrad;Punjabi, Shamita;Schnoor, Ashley;Sun, Siya;Suresh, Shashank;Szczepanik, Bryce;Taylor, D. Leland;Temmink, Annie;Vernon, William;Campbell, A. Malcolm;Heyer, Laurie J.;Poet, Jeffrey L.;Eckdahl, Todd T.
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.10.1-10.12
    • /
    • 2012
  • Introduction: We investigated frameshift suppressor tRNAs previously reported to use five-base anticodon-codon interactions in order to provide a collection of frameshift suppressor tRNAs to the synthetic biology community and to develop modular frameshift suppressor logic devices for use in synthetic biology applications. Results and Discussion: We adapted eleven previously described frameshift suppressor tRNAs to the BioBrick cloning format, and built three genetic logic circuits to detect frameshift suppression. The three circuits employed three different mechanisms: direct frameshift suppression of reporter gene mutations, frameshift suppression leading to positive feedback via quorum sensing, and enzymatic amplification of frameshift suppression signals. In the course of testing frameshift suppressor logic, we uncovered unexpected behavior in the frameshift suppressor tRNAs. The results led us to posit a four-base binding hypothesis for the frameshift suppressor tRNA interactions with mRNA as an alternative to the published five-base binding model. Conclusion and Prospects: The published five-base anticodon/codon rule explained only 17 of the 58 frameshift suppression experiments we conducted. Our deduced four-base binding rule successfully explained 56 out of our 58 frameshift suppression results. In the process of applying biological knowledge about frameshift suppressor tRNAs to the engineering application of frameshift suppressor logic, we discovered new biological knowledge. This knowledge leads to a redesign of the original engineering application and encourages new ones. Our study reinforces the concept that synthetic biology is often a winding path from science to engineering and back again; scientific investigations spark engineering applications, the implementation of which suggests new scientific investigations.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

Two-dimensional heterostructures for All-2D Electronics

  • Lee, Gwan-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.100-100
    • /
    • 2016
  • Among various two-dimensional (2D) materials, 2D semiconductors and insulators have attracted a great deal of interest from nanoscience community beyond graphene, due to their attractive and unique properties. Such excellent characteristics have triggered highly active researches on 2D materials, such as hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten diselenide (WSe2). New physics observed in 2D semiconductors allow for development of new-concept devices. Especially, these emerging 2D materials are promising candidates for flexible and transparent electronics. Recently, van der Waals heterostructures (vdWH) have been achieved by putting these 2D materials onto another, in the similar way to build Lego blocks. This enables us to investigate intrinsic physical properties of atomically-sharp heterostructure interfaces and fabricate high performance optoelectronic devices for advanced applications. In this talk, fundamental properties of various 2D materials will be introduced, including growth technique and influence of defects on properties of 2D materials. We also fabricate high performance electronic/optoelectronic devices of vdWH, such as transistors, memories, and solar cells. The device platform based on van der Waals heterostructures show huge improvement of devices performance, high stability and transparency/flexibility due to unique properties of 2D materials and ultra-sharp heterointerfaces. Our work paves a new way toward future advanced electronics based on 2D materials.

  • PDF