Browse > Article
http://dx.doi.org/10.4051/ibc.2012.4.3.0010

Bacterial Logic Devices Reveal Unexpected Behavior of Frameshift Suppressor tRNAs  

Sawyer, Eric M. (Department of Biology, Davidson College)
Barta, Cody (Department of Biology, Missouri Western State University)
Clemente, Romina (Department of Biology, Davidson College)
Conn, Michel (Department of Biology, Missouri Western State University)
Davis, Clif (Department of Biology, Missouri Western State University)
Doyle, Catherine (Department of Biology, Davidson College)
Gearing, Mary (Department of Biology, Davidson College)
Ho-Shing, Olivia (Department of Biology, Davidson College)
Mooney, Alyndria (Department of Biology, Davidson College)
Morton, Jerrad (Department of Biology, Missouri Western State University)
Punjabi, Shamita (Department of Biology, Davidson College)
Schnoor, Ashley (Department of Computer Science, Math and Physics, Missouri Western State University)
Sun, Siya (Department of Computer Science, Math and Physics, Missouri Western State University)
Suresh, Shashank (Department of Mathematics, Davidson College)
Szczepanik, Bryce (Department of Biology, Missouri Western State University)
Taylor, D. Leland (Department of Biology, Davidson College)
Temmink, Annie (Department of Mathematics, Davidson College)
Vernon, William (Department of Biology, Missouri Western State University)
Campbell, A. Malcolm (Department of Biology, Davidson College)
Heyer, Laurie J. (Department of Mathematics, Davidson College)
Poet, Jeffrey L. (Department of Computer Science, Math and Physics, Missouri Western State University)
Eckdahl, Todd T. (Department of Biology, Missouri Western State University)
Publication Information
Interdisciplinary Bio Central / v.4, no.3, 2012 , pp. 10.1-10.12 More about this Journal
Abstract
Introduction: We investigated frameshift suppressor tRNAs previously reported to use five-base anticodon-codon interactions in order to provide a collection of frameshift suppressor tRNAs to the synthetic biology community and to develop modular frameshift suppressor logic devices for use in synthetic biology applications. Results and Discussion: We adapted eleven previously described frameshift suppressor tRNAs to the BioBrick cloning format, and built three genetic logic circuits to detect frameshift suppression. The three circuits employed three different mechanisms: direct frameshift suppression of reporter gene mutations, frameshift suppression leading to positive feedback via quorum sensing, and enzymatic amplification of frameshift suppression signals. In the course of testing frameshift suppressor logic, we uncovered unexpected behavior in the frameshift suppressor tRNAs. The results led us to posit a four-base binding hypothesis for the frameshift suppressor tRNA interactions with mRNA as an alternative to the published five-base binding model. Conclusion and Prospects: The published five-base anticodon/codon rule explained only 17 of the 58 frameshift suppression experiments we conducted. Our deduced four-base binding rule successfully explained 56 out of our 58 frameshift suppression results. In the process of applying biological knowledge about frameshift suppressor tRNAs to the engineering application of frameshift suppressor logic, we discovered new biological knowledge. This knowledge leads to a redesign of the original engineering application and encourages new ones. Our study reinforces the concept that synthetic biology is often a winding path from science to engineering and back again; scientific investigations spark engineering applications, the implementation of which suggests new scientific investigations.
Keywords
tRNA; frameshift suppression; DNA-based logic gates; synthetic biology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Magliery, T.J., Anderson, J.C., and Schultz, P.G. (2001) Expanding the Genetic Code: Selection of Efficient Suppressors of Four-base Codons and Identification of "Shifty" Four-base Codons with a Library Approach in Escherichia coli. J Mol Biol 307, 755-769.   DOI
2 Anderson, J.C., Magliery, T.J., and Schultz, P.G. (2002) Exploring the limits of codon and anticodon size. Chem Biol 9, 237-244.   DOI
3 Li, Z., Rosenbaum, M.A., Venkataraman, A., Tam, T.K., Katz, E., and Angenent, L.T. (2011) Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem Commun 47, 3060-3062.   DOI
4 Dixon, N., Duncan, J.N., Geerlings, T., Dunstan, M.S., McCarthy, J.E., Leys, D., and Micklefield, J. (2009) Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci USA 107, 2830-2835.
5 Benenson, Y. (2009) RNA-based computation in live cells. Curr Opin Biotechnol 20, 471-478.   DOI
6 Ayukawa, S., Kobayashi, A., Nakashima, Y., Takagi, H., Hamada, S., Uchiyama, M., Yugi, K., Murata, S., Sakakibara, Y., Hagiya, M., et al. (2010) Construction of a genetic AND gate under a new standard for assembly of genetic parts. BMC Genomics 11 Suppl 4, S16.   DOI
7 Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann, S., de Nadal, E., Posas, F., and Sole, R. (2011) Distributed biological computation with multicellular engineered networks. Nature 469, 207-211.   DOI
8 Wagner, N. and Ashkenasy, G. (2009) Systems chemistry: logic gates, arithmetic units, and network motifs in small networks. Chemistry 15, 1765-1775.   DOI
9 Ho-Shing, O., Lau, K.H., Vernon, W., Eckdahl, T.T., and Campbell, A.M. (2012) Assembly of Standardized DNA Parts Using BioBrick Ends in E. coli. In: J P, editor. Gene Synthesis: Methods and Protocols. (New York: Humana Press), pp. 61-76.
10 Win, M.N., and Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322, 456-460.   DOI
11 Pearson, B., Lau, K.H., Alen, A., Barron, J., Cool, R., Davis, K., DeLoache, W., Feeney, E., Gordon, A., Igo, J., et al. (2011) Bacterial Hash Function Using DNA-Based XOR Logic Reveals Unexpected Behavior of the LuxR Promoter. Interdisc Bio Central 3, 1-10.
12 Penumetcha, P.L.K., Zhu, X., Davis, K., Eckdahl, T.T., and Campbell, A.M. (2010) Improving the Lac System for Synthetic Biology. BIOS 81, 7-15.   DOI
13 Knight, T.F. (2003) Idempotent Vector Design for Standard Assembly of Biobricks. MIT Synthetic Biology Working Group.
14 Ellington, A. (2005) [cited 2012 August 14]; Available from: https://www. biosci.utexas.edu/images/upload/DirectoryID_1533/123_andy.jpg.
15 2010 Cambridge iGEM team. (2010) [cited 2012 August 14]; Available from: http://2010.igem.org/Team:Cambridge/Tools/Lighting.
16 2008 Harvard iGEM team. (2008) [cited 2012 August 14]; Available from: http://2008.igem.org/Team:Harvard/Hardware.
17 E. coli. (2005) [cited 2012 August 14]; Available from: http://en.wikipedia. org/wiki/File:EscherichiaColi_NIAID.jpg.
18 2008 Cambridge iGEM team. (2008) [cited 2012 August 14]; Available from: http://openwetware.org/wiki/IGEM:Cambridge/2008/Improved_GFP.
19 Center for BioMolecular Modeling. (2008) [cited 2012 August 20]; Available from: http://www.rpc.msoe.edu/cbm/.
20 Genome Consortium for Active Teaching - Synthetic Biology (GCAT-SynBio) (2011) [cited 2012 August 20]; Available from: http://www.bio.davidson.edu/projects/gcat/GCATSynBio.html.
21 Qian, Q., Curran, J.F., and Bjork, G.R. (1998) The methyl group of the N6-methyl-N6-threonylcarbamoyladenosine in tRNA of Escherichia coli modestly improves the efficiency of the tRNA. J Bacteriol 180, 1808-1813.
22 Kurata, S., Ohtsuki, T., Wada, T., Kirino, Y., Takai, K., Saigo, K., Watanabe, K., and Suzuki, T. (2003) Decoding property of C5 uridine modification at the wobble position of tRNA anticodon. Nucleic Acids Res Suppl, 245-246.
23 Crick, F.H. (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19, 548-555.   DOI
24 Vendeix, F.A., Dziergowska, A., Gustilo, E.M., Graham, W.D., Sproat, B., Malkiewicz, A., and Agris, P.F. (2008) Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding. Biochemistry 47, 6117-6129.   DOI
25 Elias, Y., and Huang, R.H. (2005) Biochemical and structural studies of A-to-I editing by tRNA:A34 deaminases at the wobble position of transfer RNA. Biochemistry 44, 12057-12065.   DOI
26 Takai, K., Okumura, S., Hosono, K., Yokoyama, S., and Takaku, H. (1999) A single uridine modification at the wobble position of an artificial tRNA enhances wobbling in an Escherichia coli cell-free translation system. FEBS Lett 447, 1-4.   DOI
27 Capone, J.P., Sharp, P.A., and RajBhandary, U.L. (1985) Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J 4, 213-221.
28 Basso, J., Tiganos, E., and Herrington, M.B. (1993) Nonsense suppression in thymine-requiring strains of Escherichia coli is a consequence of altered folate metabolism. Mol Gen Genet 238, 218-224.
29 Riabnikova, N.A., Sopova, Iu V., Polozkov, G.V., Savelova, M.V., and Inge- Vechtomov, S.G. (2004) Frameshift suppression through inactivation of translation termination in yeast Saccharomyces cerevisiae: significance of the local context. Genetika 40, 885-892.
30 Rodriguez, E.A., Lester, H.A., and Dougherty, D.A. (2006) In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. Proc Natl Acad Sci USA 103, 8650-8655.   DOI
31 Zadorskii, S.P., Borkhsenius, A.S., Sopova, Iu V., Startsev, V.A., and Inge-Vechtomov, S.G. (2003) Suppression of nonsense and frameshift mutations obtained by different methods for inactivating the translation termination factor eRF3 in yeast Saccharomyces cerevisiae. Genetika 39, 489-494.
32 O'Connor, M. (1998) tRNA imbalance promotes -1 frameshifting via near-cognate decoding. J Mol Biol 279, 727-736.   DOI
33 Registry of Standard Biological Parts. (2003) [cited 2012 August 14]; Available from: http://partsregistry.org/Main_Page.
34 Gray, K.M., and Garey, J.R. (2001) The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology 147, 2379-2387.   DOI
35 O'Connor, M. (2003) tRNA hopping: effects of mutant tRNAs. Biochim Biophys Acta 1630, 41-46.   DOI
36 Baumgardner, J., Acker, K, Adefuye, O., Crowley, S.T., DeLoache, W., Dickson, J.O., Heard, L., Marten, A.T., Morton, N., Ritter, M., et al. (2009) Solving a Hamiltonian Path Problem with a bacterial computer. J Biol Eng 3, 11.   DOI
37 Haynes, K.A., Broderick, M.L., Brown, A.D., Butner, T.L., Dickson, J.O., Harden, W.L., Heard, L.H., Jessen, E.L., Malloy, K.J., Ogden, B.J., et al. (2008) Engineering bacteria to solve the Burnt Pancake Problem. J Biol Eng 2, 8.   DOI
38 Olaniran, A.O., Motebejane, R.M., and Pillay, B. (2008) Bacterial biosensors for rapid and effective monitoring of biodegradation of organic pollutants in wastewater effluents. J Environ Monit 10, 889-893.   DOI
39 Dua, M., Singh, A., Sethunathan, N., and Johri, A.K. (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59, 143-152.   DOI   ScienceOn
40 Zhang, X. (2009) Twenty years development of metabolic engineering- -a review. Sheng Wu Gong Cheng Xue Bao 25, 1285-1295.
41 Win, M.N., Liang, J.C., and Smolke, C.D. (2009) Frameworks for programming biological function through RNA parts and devices. Chem Biol 16, 298-310.   DOI