• Title/Summary/Keyword: physics concept

Search Result 219, Processing Time 0.028 seconds

Multi Physics research of Energy material using Ghost Fluid concept (Ghost Fluid concept기반의 에너지 물질의 Multi Physics 연구)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.299-302
    • /
    • 2006
  • We present an innovative means of numerically treating interfaces associated with chemically active energetic materials. Recent advances in wave tracking technique based on the Ghost Fluid Concept is extended to handle multi-material multi-phase interfaces associated with chemical environment associated with explosion. We show several work-in-progress applications of our code, including the impact problems involving both energetic and inert elements. Accurate modeling of the equation of state and the constitutive relations are also discussed

  • PDF

The Differences between Physicists' Expectations and Teachers' Representations about the Primary Physics Concepts in Elementary Schools (학문과 학자가 요구하는 초등학교 수준의 물리분야 기본개념과 교과와 교사가 인지하고 표현하는 기본개념의 일치도 연구)

  • Kwon, Nan-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.5
    • /
    • pp.535-550
    • /
    • 2007
  • The purpose of this study was the identifying differences between physicists' expectations and teachers' representations about the primary physics concepts in elementary schools. For this, the material subjects analyzed were the 7th curriculum, the textbooks of elementary school and the texts using at the department of physics in many universities. The primary physics concepts extracted from the texts were to be fundamental and basic. Also, they were restricted to the domain of dynamics. And besides, the human subjects were physicists, professors and students majoring physics of the graduate school, researchers of institutes or laboratories and elementary school teachers. At the result of this study showed the scholars and teachers have the different opinions.

  • PDF

Strategy and Application of Phased Context Teaching-Learning for Helping Physics Learning (물리 학습을 돕기 위한 단계적 상황 교수·학습 전략 및 적용)

  • Song, Youngwook;Choi, Hyukjoon
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.333-342
    • /
    • 2015
  • The purpose of this research was to investigate the effect of physics learning through the teaching-learning strategy of phased context in introductory physics classes. The participants in the study included 35 university freshmen. The teaching-learning strategy of phased context were developed by idealizing, extending and comparing contexts which were then applied in introductory physics classes : six hour classes about straight line motion, two-dimensional motion and Newton's laws of motion. The effects of the physics learning were then analyzed by the FCI (Force Concept Inventory) and MPEX (Maryland Survey on Physics Expectation) questionnaires. The results showed that the teaching-learning strategy of phased context helped change the force concept and did not change the belief about physics learning. Finally, based on the results of the study, we discuss possible educational implications for phased context in introductory physics classes.

  • PDF

Reasoning Models in Physics Learning of Scientifically Gifted Students (과학영재의 물리개념 이해에 관한 사고모형)

  • Lee, Young-Mee;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.796-813
    • /
    • 2008
  • A good understanding of how gifted science students understand physics is important to developing and delivering effective curriculum for gifted science students. This dissertation reports on a systematic investigation of gifted science students' reasoning model in learning physics. An analysis of videotaped class work, written work and interviews indicate that I will discuss the framework to characterize student reasoning. There are three main groups of students. The first group of gifted science students holds several different understandings of a single concept and apply them inconsistently to the tasks related to that concept. Most of these students hold the Aristotelian Model about Newton's second law. In this case, I define this reasoning model as the manifold model. The second group of gifted science students hold a unitary understanding of a single concept and apply it consistently to several tasks. Most of these students hold a Newtonian Model about Newton's second law. In this case, I define this reasoning model as the coherence model. Finally, some gifted science students have a manifold model with several different perceptions of a single concept and apply them inconsistently to tasks related to the concept. Most of these students hold the Aristotelian Model about Newton's second law. In this case, I define this reasoning model as the coherence model.

A Biophysical Interpretation of NSD and TDF (NSD와 TDF에 관한 물리적 고찰)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1990
  • On the basis of the review of radiobiological date, a formalism is developed for the analysis and prediction of iso-effect relations for tissue tolerance, which can be used as an alternative to the norminal standard dose(NSD) formaula of Ellis and its derived equations. An important feature of the described formalism is that directly based on radiobiological insights and it provides a more logical concept to account for the diversity of tissue responses. The NSD concept has subsequently been extended to the formalisms of timedose-fractionation(TDF) value. The authors deriveded TDF equation on the basis NSD of Ellis. TDF=0.07(NSD)-26.

  • PDF

Cosmic Web: concept, skeleton, connectivity

  • Pogosyan, Dmitri
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.36.1-36.1
    • /
    • 2019
  • In this talk I will review the concept of the Cosmic Web which is behind our understanding of the filamentary structures in the matter distribution in our Universe at large scales, how it can be described geometrically, and some of its most basic properties.

  • PDF

The Effects of Instructors' Characteristics on the Concept Change of Korean High-School Students. (개념제시자의 특성이 고등학생의 물리 개념 변화에 미치는 영향)

  • Lim, Jung-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.340-350
    • /
    • 1996
  • Knowledge is composed through the interaction between the concept structure already held by students and their experience, and learning can be said to be the active process of solving the cognitive conflict caused by this interaction. Therefore, this study consists in showing the effective learning method and finding out the elements which the teacher has to own, through examining several forms of pre-conception or mis-conception of the inertia, the force-equilibrium, the action and reaction, the heat, and the electric current, and then finding out their solution and studying student's change in science concepts. For this study, the types of concept on the five above-mentioned materials which students have were examined through the concept-classifying question paper, and the classes to which the class mode for the change of concepts applied, were practised in each different classroom by each different instructor - a professor, a scientist, a teacher, and two students, respectively. And the effect of the teaching strategy based on these classes, and each different instructor' influence on the change of concept in students. were examined. The result of my study is as follows; 1. Students have various types of pre-conception which are different from science concept, and these types of pre-conception tend to last even after learning in class. 2. The thoughts on the correct science concept of the high school third-grade students who learned the physics in the traditional teaching method, and the second grade students who don't learn the physics yet, were nearly equal those of the second grade students by receiving the physics class through the cognitive conflict course were greatly changed especially that students showed the distinct change on mechanics and electric current. 3. Students didn't show the remarkable change of the science concept on the five materials in the four kinds of experimental classes by each different instructor but in the part of mechanics, there was the distinct change between the class by professor and those by the students. This was due to the difference of the authority and the attitude of the concept demonstrator. 1) The authority, the kind attitude, and the responsibility of the expert played an important role in the correct concept-formation of mechanics part - especially in the case of the mis-conception caused by the intuitive belief. 2) In the class by instructor with the democratic teaching method, the change of concept took place more easily, because in his class students could discuss the subject freely, so that they might experience the thought course to give them the confidence on the science concept.

  • PDF

The quantification of photon counts using the concept of candela (Candela 개념의 광량정량화 활용에 관한 연구)

  • Kim, Hyeon Sik;Choi, Eun Seo;Lee, Byeong-Il
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • We developed quantification method based on the concept of candela in physics. The measurement of fluorescence signal from a nude mouse in the research of molecular biology. In the measurement of the optical signal with CCD, the quantification method for photon counts based on bio-luminescence imaging technique can provide comparative reference data. In this paper, we described theoretical derivation of our proposed concept. We hope this method could be a useful standard reference for quantitative date analysis in optical imaging.

  • PDF

An Embodiment of High Energy Physics Data Grid System (고에너지물리 데이타 그리드 시스템의 구현)

  • Cho Ki-Hyeon;Han Dae-Hee;Kwon Ki-Hwan;Kim Jin-Cheol;Yang Yu-Chul;Oh Young-Do;Kong Dae-Jung;Suh Jun-Suhk;Kim Dong-Hee;Son Dong-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.390-398
    • /
    • 2006
  • The objective of the High Energy Physics(HEP) is to understand the basic properties of elementary particles and their interactions. The CMS(Compact Muon Solenoid) experiment at CERN which will produce a few PetaByte of data and the size of collaboration is around 2000 physicists. We cannot process the amount of data by current concept of computing. Therefore, an area of High Energy Physics uses a concept of Tier and Data Grid. We also apply Data Grid to current High Energy Physics experiments. In this paper, we report High Energy Physics Data Grid System as an application of Grid.

REACTOR PHYSICS CHALLENGES IN GEN-IV REACTOR DESIGN

  • DRISCOLL MICHAEL J.;HEJZLAR PAVEL
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • An overview of the reactor physics aspects of Generation Four(GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and ecoomics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.