• Title/Summary/Keyword: physicochemical factors

Search Result 310, Processing Time 0.022 seconds

Factors Controlling Some Physicochemical Properties of Bentonite (벤토나이트의 물리-화학적 성질을 지배하는 요인분석)

  • 고상모;손병국;송민섭;박성환;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.259-272
    • /
    • 2002
  • This study was tried to interpret the important major factors controlling some physicochemical properties by comparing mineralogical and physicochemical characteristics such as pH, cation exchange capacity, Methylene Blue adsorption amount, swelling, viscosity, strength (compressional and tensile), and surface area etc. Investigated bentonite samples are five Korean samples from Dusan, Naa, Oksan, Dongyang, and Yeonil deposits and two Japanese bentonites from Tsukinuno and Tomioka deposits which were formed under a similar geological environment of the Tertiary basin. Tsukinuno bentonite is only natural Na-type bentonite and the others are all Ca-type bentonites. Most of the properties are not explained by the montmorillonite content only though the most important factor controlling the physicochemical properties is the montmorillonite content. The layer charge of montmorillonite will strongly control cation exchange capacity and Methylene Blue adsorption. Zeolite bearing bentonites show the strong alkaline character and causes the increase of cation exchange capacity, however decrease swelling, viscosity and strengths. Pyrite bearing bentonites decrease green compressional strength and wet tensile strength. The exchangeable interlayer cations control some physicochemical properties. Na-type bentonite than Ca-type shows more strong alkaline character and much more advanced swelling and viscosity. Also the size and thickness of montmorillonite flakes seem to control some physicochemical properties. Bentonite mainly composed of montmorillonite of very thin and large flakes is characterized by the very high surface area, cation exchange capacity, viscosity, swelling, Methylene Blue adsorption, green compressional strength and wet tensile strength. Domestic Dusan bentonite shows the most excellent physicochemical properties, which is due to the high content(84%) and very well crystallinity of montmorillonite.

Status of Water Pollution of Gyeongan River, Korea (경안천의 오염현황)

  • Yi, Dong-Seok;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.698-702
    • /
    • 2004
  • At five stations in Gyeongan River, a tributary of Lake Paldang, physicochemical and biological environmental factors of water, particulate matters, and sediments were investigated biweekly from April 11 to December 22 in 2001. The studied area was characterized as a stream-lake system. The system is primarily referred to a place where the environmental factors had considerably changed depending on the amount of precipitation. As a result, the river turned out to be strongly eutrophicated. Also, some characteristics of the water and the particulate matters at midstream such as average concentrations of conductivity, nutrients, and chlorophyll $\alpha$ were higher than the characteristics of up and down-stream. However, the concentrations of organic matters and ratio of clay and silt of the midstream were determined to be higher than up and down-stream sediments. As the result of the factor analysis, 4 major different patterns for environmental factors are found from samples of water, particulate matters, and sediments.

Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

  • Ha, Ho-Kyung;Nam, Gyeong-Won;Khang, Dongwoo;Park, Sung Jean;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.123-133
    • /
    • 2017
  • The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) ${\beta}-lg$ nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of ${\beta}-lg$ nanoparticles. The morphological and physicochemical properties of ${\beta}-lg$ nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of ${\beta}-lg$. The surface hydrophobicity and free thiol groups of ${\beta}-lg$ were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in ${\alpha}-helical$ content and an increase in ${\beta}-sheet$ content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to $20^{\circ}C$ for 30 min, followed secondly by a mild heat temperature treatment from 55 to $75^{\circ}C$ for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of ${\beta}-lg$ nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of ${\beta}-lg$ during nanoparticle formation, and due to its modulation of the physicochemical properties of ${\beta}-lg$ nanoparticles.

Early Growth Characteristics of Quercus rubra Associated with Soil Physicochemical Properties and Meteorological Factors in Six Regions of South Korea (토양 물리·화학적 성질 및 기상인자에 따른 국내 6개 지역의 루브라참나무 초기 생장 특성)

  • Hwang, Hwan Su;Kim, Tae Lim;Oh, Changyoung;Lim, Hyemin;Lee, Il Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.357-364
    • /
    • 2022
  • We investigated the early growth characteristics of Quercus rubra planted in six regions (Hwaseong, Yangpyeong, Pyeongchang, Samcheok, Chungju, and Gimje) in South Korea in relation to soil physicochemical properties and meteorological factors. Q. rubra (1-0) were planted at a density of 3,000 trees ha-1. The average height, root collar diameter (RCD), and volume of 8-year-old Q. rubra planted in 2014 were 3.52 m, 3.84 cm, and 0.0023 m3, respectively. The growth parameters of Q. rubra were the highest and lowest in Hwaseong and Pyeongchang, respectively. Correlation analysis among the soil physicochemical properties, meteorological factors, and plantation growth characteristics found that pH was the only soil factor negatively correlated with RCD, and the other soil factors were not significantly correlated with the growth characteristics. However, growth characteristics were positively correlated to average temperature from March to October and daily maximum temperature; and they were negatively correlated to altitude, topology, and the number of rainy days from March to October. In particular, the trees planted in Hwaseong area showed the best early growth characteristics because this area had the highest daily maximum temperature, the x average temperature from March to October, the low altitude, and it is located close to the foot of a mountain. In Pyeongchang, the early growth characteristics were negatively affected by winter cold damage because of the high altitude, low daily minimum temperature, and damage by wild animals. In Hwaseong, meteorological factors such as temperature and altitude were more highly correlated to growth characteristics of Q. rubra than the physicochemical soil properties. These results will provide useful information for determining suitable sites for Q. rubra plantations and for predicting early growth characteristics in response to environmental factors.

Physicochemical factors affecting the adsorption of E. coli in estuarine sediments (하구퇴적토 환경에서 E.coli의 부착에 영향을 주는 물리화학적 요인)

  • 이건형
    • Korean Journal of Microbiology
    • /
    • v.26 no.3
    • /
    • pp.237-246
    • /
    • 1988
  • The higher bacterial numbers on clay than on sand were caused by different environmental factors. Such factors affecting the adsorption of E. coli ATCC 11775 in the sediment as follows; optimal pH range for the adsorption of E. coli ATCC 11775 was pH 7.5-pH 9.5. E. coli ATCC 11775 were shown maxima in the salinity of 18.$75%_{o}$ on sand type sediment and $12.5%_{o}$ on clay type sediment. Bacteria attached better to clay typed sediment than to sand typed sediment when organic substance was eliminated. Beef extract of 0.5%-1% concentration was found to promote the attachment of E. coli ATCC 11775 effectively. Peptone of 0.5% was enganced the attachment on the clay, and peptone of 1.3%-5%, on the sand. E. coli ATCC 11775 was found to adsorb onto benthonite with the highest efficiency and on celite with the lowest efficiency. Efficiency of adsorption by inorganic ions was shown due to higher values of ion. Adsorption was achieved in the order of $Al^{3+}, Ca^{2+}, Na^{+}$.

  • PDF

Analysis of Work Performance and Related Factors of Construction Site Health Manager (건설현장 보건관리자의 업무수행정도와 관련요인 분석)

  • Jung, Hye-Sun;Choi, Eun-Hi;Beak, Eun-Mi
    • Korean Journal of Occupational Health Nursing
    • /
    • v.27 no.1
    • /
    • pp.48-58
    • /
    • 2018
  • Purpose: The purpose of this study was to understand the present status of the work performance of the construction industry health managers and the developmental direction for the construction industry health management. Methods: The subjects of this study were 149 health managers working in the construction industry. Data of a total of 130 participants were analyzed by excluding the missing data among field workers. The contents of the survey were the characteristics of the workplace, the difficulties and requirements of health management, and the level of job performance. Results: The factors affecting measuring work environment task were age, number of workers, number of safety managers, and lack of support from the headquarters. The factors affecting managing work environment and physicochemical harmful factors were age, type of contract and conflicting business opinions. The factors affecting implementing health examination were age, type of contract, and number of safety managers. The factors affecting healthcare were age, type of contract, number of safety manager, presence of healthcare room, and conflicting business opinions. Conclusion: It is necessary to provide practical guidance and practical resources, and education for strengthening capacity. The support for business owners and managers support is needed.

Preparation of Kimchi and Salting (김치담금과 소금절임)

  • 김순동
    • Food Science and Preservation
    • /
    • v.4 no.2
    • /
    • pp.215-225
    • /
    • 1997
  • The review was conducted to organize the desirable salting process from the literatures. In this study the principle of salting and effects of physicochemical changes in salting and salting factors such as cultivars of baechu(Chinese cabbage), concentration of salt, salting temperature, pH condition for salting and quality of kimchi were studied. The method of salting standard, treatment techniques in salting, and selection and mixture ratio of sub-ingredients were also reviewed. In future studies greater attention should be paid to salting and fermentation of kimchi.

  • PDF

Effect of Crystal Form(Habit) on Dissolution Rate of Aspirin and Phenacetin (결정형(Habit)이 아스피린과 페나세틴의 용출 속도에 미치는 영향)

  • Cho, Ji-Woon;Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 1990
  • Some studies reported physicochemical factors of drugs affecting solubility and dissolution rate. However, few have been reported about pharmaceutical application of crystal forms (habits). Therefore, using acetylsalicylic acid and phenacetin as model substances, we monitored the effects of crystal forms on the dissolution rates.

  • PDF

Varietal and Culture-Seasonal Variation in Physicochemical Properties of Rice Grain and Their Interrelationships (쌀의 식미 관련 이화학 성분의 품종 및 작기간 변이와 상관 관계)

  • 오용비
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.72-84
    • /
    • 1993
  • This study was carried out to understand the varietal variation in physicochemical properties of rice grain and those environmental changes by different transplanting time, and to elucidate the interrelationships among the factors related with eating quality of cooked rice. Fifty three rice samples, among which fifty samples were harvested at ordinary or late transplanted plots of the Crop Experiment Station in Suwon and three samples were harvested orpurchased from Niigata prefecture in Japan, were tested for various physicochemical components of rice grain and some physical factors of cooked rice. All of twenty seven rice cultivars tested were the recent-bred Korean japonica rice showing the wide range of maturity from early to medium-late heading and considerable difference in palatability of cooked rice. Amylose content, taste value by Nireco palatability tester (TVN), iodine blue color of cooking extracts(IB), and the ratio of IB /extracted solid amounts (ES) increased significantly by late transplanting, while viscosity (VN) and Mg / K. N value by Nireco tester, hot-water absorption of milled rice (HA), loss tangent of cooked rice by Rheolograph-Micro(LT), and most viscogram characteristics except setback viscosity (C-P) decreased drastically by late transplanting as compared with ordinary transplanting. Most of physicochemical properties of milled rice revealed narrower varietal variation in lately transplanted plot than in ordinary transplanted one. Protein content (PRO), volume expansion rate of cooked rice(VE), C-P and all physical factors of cooked rice by Rheolograph-Micro showed almost negligible seasonal variation, while amylose content (AM), VN, HA, IB/ES, peak viscosity(P), hot viscosity(H) and breakdown(P-H) viscosity exhibited considerably large seasonal variation. The early-headed varieties revealed lower amylose content and smaller seasonal variation of IB/ES compared with medium or medium-late headed rice varieties. AM was closely associatied with IB and IB / ES and VN was highly correlated with Mg/K. N and TVN in both ordinary and late transplanted plots. VN also was highly negatively correlated with cooking characteristics and highly positively correlated with viscogram properties in ordinary culture. PRO was closely connected with moisture content of milled rice and L T in ordinary transplanted plot. IB, which was closely connected with ES, was also singificantly associated LT, P and P-H in ordinary seasonal culture. IB/ES was highly negatively correlated with P, P-Hand P-H / C-P in ordinary culture but with LT and dynamic viscosity of cooked rice in late seasonal culture. The thirty rice cultivars were largely classified into two varietal groups by cluster analysis with physicochemical properties related with eating quality of cooked rice. Korean and Japanese high-quality rice cultivars were separately distributed in two respective varietal group.

  • PDF

Influence of Physicochemical Properties on Cesium Adsorption onto Soil (토양의 물리화학적 특성이 세슘 흡착에 미치는 영향)

  • Park, Sang-Min;Lee, Jeshin;Kim, Young-Hun;Lee, Jeung-Sun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2017
  • Cesium (Cs) generated by nuclear accidents is one of the most hazardous radionuclides because of its gamma radiation and long half-life. Especially, when Cs is exposed on the soil environments, Cs is mainly adsorbed on the topsoil and is strongly combined with tiny soil particle including clay minerals. The adsorption of Cs onto soil can vary depending on various physicochemical properties of soil. In this study, the adsorption characteristics between soil and Cs were investigated according to various physicochemical properties of soil including organic matter contents, cation exchange capacity (CEC), soil particle size, and the types of clay minerals. Soil organic matter inhibited the adsorption of Cs onto the soil because organic matter was blocking the soil surface. In addition, it was estimated that the CEC of the soil influenced the adsorption of Cs onto the soil. Moreover, more Cs was adsorbed as the soil particles size decreased. It was estimated that Cs was mostly adsorbed onto the topsoil, this is related to the clay mineral. Therefore, soil organic matter, CEC, soil particle size, and clay minerals are considered the key factors that can influence the adsorption characteristics between soil and Cs.