• Title/Summary/Keyword: physically based model

Search Result 250, Processing Time 0.029 seconds

Development and Applications of Hydrologic Model of Storm Sewer Runoff at Small Urban Area (도시소유역의 유출해석을 위한 수문모형의 개발과 응용)

  • 박승우;이영대
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.19-19
    • /
    • 1990
  • The paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrographs and inundation conditions within a small urban catchment. The model considers three typical flow conditions of urban drainage networks, whichn are overland flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with field data from a tested catchment having drainage area of 4.91 ha. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF

도시소유역의 유출해석을 위한 수문모형의 개발과 응용 - Development and Applications of Hydrologic Model of Strom Sewer runoff at Small Urban Area

  • 이영대;박승우
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.329-340
    • /
    • 1990
  • The Paper presents the development and applications of physically-based urban runoff analysis model, URAM, which is capable of simulating sewer runoff hydrograhps and inundation conditions within a samll urban catchment. The model coniders three typical flow conditions of urban drainage networks, which are over-land flow, gutter flow, and conduit flow during a storm. Infiltration, retention storage and flow routing procedures are physically depicted in model. It was tested satisfactorily with the field data from a tested catchment having drainage area of 0.049k$m^2$. It was also applied to other urban areas and found to adequately simulate inundation areas and duration as observed during storms. The test results as well as model components are described in the paper.

  • PDF

A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling (밀링 작업에서 순간 전단면에 기초한 절삭력 모델에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.225-260
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure for the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

  • PDF

A Study on the Instantaneous Shear Plane Based Cutting Force Model for End Milling (엔드밀링에서 순간전단면을 이용한 절삭력 모델 연구)

  • Hong, Min-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.34-43
    • /
    • 2002
  • The purpose of this paper is to further extend the theoretical understanding of the dynamic end milling process and to derive a computational model to predict the milling force components. A comparative assessment of different cutting force models is performed to demonstrate that the instantaneous shear plane based formulation is physically sound and offers the best agreement with experimental results. The procedure f3r the calculation of the model parameters used in the cutting force model, based on experimental data, has been presented. The validity of the proposed computational model has been experimentally verified through a series of cutting tests.

Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries

  • Choi, Woosung;Shin, Heon-Cheol;Kim, Ji Man;Choi, Jae-Young;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Application of TOPMODEL at Artificially Drained Watershed (인공배수유역에서의 TOPMODEL의 적용)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.539-548
    • /
    • 1997
  • A physically based model for rainfall runoff simulation in agricultural watershed equipped with tile drains is presented. This model is developed from the TOPMODEL which is based on the detailed topographic information provided by Digital Elevation Model (DEM). Nine possible flow generation scenarios in the tile drained basin are suggested and used in the development of the model. The model can identify the portions of the hydrograph resulting from tile flow, subsurface flow and surface flow. The performance of the model is assessed through a calibration and validation process. The results of the analysis show that the model describes the physical system well and provides a better insight into the hillslope hydrology of agricultural watersheds with tile drainage.

  • PDF

Simulation model at continuous steel-making process (연속제강공정의 simulation model)

  • Moon, Il;Song, Hyung-Keun;Shim, Jae-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.474-478
    • /
    • 1986
  • The phenomenon of a continuous Steel-making process was studied with a set of collected equilibrium data for the steel-oxidation reactions. Mass and Heat balances were also established. Mass transfer constants which are physically unmeasurable but escential for the simulation study in the steel-making process were calculated from the experimental data using an optimization technique. Based on these data various operating conditions and process characteristics were examined.

  • PDF

Real-time Modeling and Rendering of Tidal in Qiantang Estuary

  • Wang, Chang-Bo
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Tidal bore is a peculiar nature phenomenon which is caused by the lunar and solar gravitation. Based on the physical characters of tidal bores, in this paper we propose a novel method to model and render this phenomenon, especially the tidal waves in Qiantang estuary. According to Boltzmann equation for tidal waves, we solve it with the novel triangle mesh of Kinectic Flux Vector Splitting (KFVS) mode. Then a method combining a curve forecasting wave and particles model is proposed to render the dynamic scenes of overturning tidal waves. Finally, with some rendering technologies, various realistic tidal waves under diversified conditions is rendered in real time.

Simulation of Submicron MOSFET Using Hydrodynamic Model (Hydrodynamic model을 이용한 Submicron MOSFET의 Simulation)

  • 김충원;한백형;김경석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.122-131
    • /
    • 1993
  • In this paper, we have developed a submicron Si MOSFET simulator, which is physically based on the hydrodynamic energy transport mode. The simulator was used to investigate the nonstationary transport effects and the transient phenomena in submicron Si MOSFET's. It is found that the velocity overshoot and the carrier heating are dominant transport mechanism near the drain end of the channel and the transient phenomena is more retained in a long channel MOSFET.

  • PDF