• Title/Summary/Keyword: physical uncertainty

Search Result 259, Processing Time 0.03 seconds

Standard Field Generation Using a Micro-TEM Cell and Its Measurement Uncertainty Evaluation (Micro-TEM Cell을 사용한 표준 전자기장의 발생 및 측정불확도 평가)

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Kang, Ung-Taek;Kang, No-Weon;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2009
  • In this paper, a standard field generation method using a micro-TEM ceil is described and its measurement uncertainty is evaluated. The standard field generation system consists of an auto-leveling signal source, a micro-TEM cell operating up to 1.2 GHz, and a power measuring Instrument using a thermistor mount. Measurement results of a field strength key comparison (CCEM.RF-K20) for the field strength of 20 V/m at frequencies between 10 MHz and 1 GHz are presented for validating the standard field generation method.

Development of Laser Power Meter Calibration System with 12-diode Laser Sources (12개 다이오드 레이저를 활용하는 레이저 복사출력계 교정시스템 개발)

  • Kanghee Lee;Jae-Keun Yoo;In-Ho Bae;Seongchong Park;Dong-Hoon Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.2
    • /
    • pp.61-70
    • /
    • 2024
  • We demonstrate a laser power meter calibration system based on 12-diode laser sources coupled to single-mode fibres in a wavelength range from 400 to 1,600 nm. In our system, three laser power controllers ensure that the output power uncertainty of all laser sources is less than 0.1% (k=2). In addition, all laser beams are adjusted to have similar beam sizes of approximately 2 mm (1/e2-width) at the measurement position to minimise unmeasured laser power on a detector. As a reference detector, we use an integrating sphere combined with silicon and indium gallium arsenide photodiodes to minimise the non-uniformity and non-linearity of responsivity. The minimum uncertainty of the calibration system is estimated to be 1.1% (k=2) for most laser wavelengths.

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

An Uncertainty Assessment of Temperature and Precipitation over East Asia (동아시아 기온과 강수의 불확실성 평가)

  • Shin, Jin-Ho;Kim, Min-Ji;Lee, Hyo-Shin;Kwon, Won-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.299-303
    • /
    • 2008
  • In this study, an uncertainty assessment for surface air temperature(T2m) and precipitation(PCP) over East Asia is carried out. The data simulated by the intergovermental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Atmosphere-Ocean coupled general circulation Model (AOGCM) are used to assess the uncertainty. Examination of the seasonal uncertainty of T2m and PCP variabilities shows that spring-summer cold bias and fall warm bias of T2m are found over both East Asia and the Korea peninsula. In contrast, distinctly summer dry bias and winter-spring wet bias of PCP over the Korea peninsula is found. To investigate the PCP seasonal variability over East Asia, the cyclostationary empirical orthogonal function(CSEOF) analysis is employed. The CSEOF analysis can extract physical modes (spatio-temporal patterns) and their undulation (PC time series) of PCP, showing the evolution of PCP. A comparison between spatio-temporal patterns of observed and modeled PCP anomalies shows that positive PCP anomalies located in northeastern China (north of Korea) of the multi-model ensemble(MME) cannot explain properly the contribution to summer monsoon rainfalls across Korea and Japan. The uncertainty of modeled PCP indicates that there is disagreement between observed and MME anomalies. The spatio-temporal deviation of the PCP is significantly associated with lower- and upper-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly contribute to summer rainfalls. These lower- and upper-level circulations physically consistent with PCP give a insight of the reason why differences between modeled and observed PCP occur.

  • PDF

Recent Trends in Numerical Simulation of Liquid Sprays (분무 해석 시뮬레이션 기술의 최근 동향)

  • Huh, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.12-32
    • /
    • 2000
  • The recent trends in numerical simulation of various spray phenomena are reviewed in this article. Major subtopics are atomization/breakup, collision/coalescence, wall collision, interfacial transfer, droplet dispersion, two-phase injection and spray combustion. Each submodel has been under continuous refinement and validation against more extensive data base by advanced laser diagnostic techniques. Most uncertainty in current spray simulations come from these physical submodels, not from excessive computational constraints.

  • PDF

Properties of Ginkgo Wood (은행나무 목재의 재질)

  • 김규혁;조재성;김재진
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.1
    • /
    • pp.75-84
    • /
    • 2000
  • Ginkgo trees have long been planted in Korea as roadside trees and ornamental trees, but the wood was seldom used except some utilization for small artifacts. Soaring prices of imported wood and future uncertainty about long-term supply of foreign woods have stimulated research on value-added utilization of less-utilized domestic wood resources such as Ginkgo wood. The properties of Ginkgo wood were investigated to determine its utilization potential in this study, and the results of anatomical, physical, and mechanical studies were presented with chemical compositions.

  • PDF

Study on Timing Failures in Cyber-Physical Systems

  • Kong, Joon-Ik
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.56-63
    • /
    • 2022
  • Cyber-physical systems (CPSs) can solve real problems by utilizing closely connected resources in the cyber world. Most problems arise because the physical world is uncertain and unpredictable. To address this uncertainty, information pouring from numerous devices must be collected in real-time, and each interconnected device must share the information. At this time, CPS must meet timing-related techniques and strict timing constraints that can deliver accurate information within predefined deadlines in order to interact closely beyond simply connecting the cyber and physical worlds. Timing errors in safety-critical systems, such as automobiles, aviation, and medical systems, can lead to catastrophic disasters. In this paper, we classify timing problems into two types: real-time delay and synchronization problems. The results of this study can be used in the entire process of CPS system design, implementation, operation, verification, and maintenance. As a result, it can contribute to securing the safety and reliability of CPS.

A Study on the Effect of Experience-specificity and Uncertainty on Choice in Experiential Products -From Transaction Cost Perspective- (경험재 거래의 경험특유성, 불확실성이 선택에 주는 영향에 관한 연구 -거래비용적 관점에서-)

  • Jeong, Yun-Hee;Park, JI-Yeon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.4
    • /
    • pp.152-159
    • /
    • 2019
  • The purpose of this study is to investigate the effect of transaction characteristics on transaction cost and choice intention by applying transaction cost theory to experiential product. Experience-specificity, transaction uncertainty, and personal uncertainty are proposed to reflect the characteristics of experiential products, and the effects of these variables on transaction costs and transaction costs are assumed to have an influence on the choice intention. The results of this study are summarized as follows. First, experience-specificity(site, physical equipment, knowledge skill, temporal), transactional uncertainty(product-, process-), personal uncertainty (preference-, and situation-) have a significant positive effect on transaction cost. Second, transaction costs (search, comparison, examination, negotiation, payment, delivery) have a significant negative effect on the choice intention of the experiential product. The results of this study show that the increase of transaction costs can reduce the choice of experiential products and the strategic consideration of experience specificity, transaction uncertainty and individual uncertainty are required to reduce transaction costs. In addition, experiential products lacked access from a transactional and cost-based point of view, and this study contributes theoretically by compensating for the lack.

Measurement of triple point of water temperature for improvement of the national standards and key comparison (국가표준향상과 핵심국제비교를 위한 물의 삼중점 온도 측정)

  • Yang, Inseok;Lee, Young Hee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-356
    • /
    • 2021
  • The Korea Research Institute of Standards and Science (KRISS), a National Metrology Institute of Korea, participated in the second-round of the international key comparison CCT-K7.2021 of triple point of water (TPW) cells. For the key comparison, three TPW cells, one of which had been used in the old CCT-K7 comparison, were assigned as the national standard of the TPW. The temperature difference (ΔT) between the average of the new and old national standards and ΔT between the new national standard and the transfer standard were measured. The comparison between the new and old national standards indicated a temperature increase of 69.5 µK after both the standards were corrected for the isotopic composition. The uncertainty of the national standard of the TPW temperature was 28 µK, and the uncertainty of ΔT was 14 µK. Three aspects of improvements in the new comparison compared to the old one were noted: (1) inclusion of two quartz cells in the national standard strengthens its long-term stability; (2) the standard deviation associated with the measurement of ΔT was reduced from 21 µK to 9.6 µK; (3) and the measured immersion profile of the TPW cells was much closer to the theoretically predicted dependence.

Intralaboratory Comparison of the Realization of the Triple-point Temperature of Mercury (수은 삼중점 온도 실현의 교정 기관 내 비교)

  • Inseok, Yang;Young Hee, Lee
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.448-454
    • /
    • 2022
  • An intralaboratory comparison of the realization of the triple-point temperature of mercury, which is defined as -38.8344℃ on the international temperature scale of 1990 (ITS-90), was conducted at the Korea Research Institute of Standards and Science (KRISS), the national metrology institute of Korea. To this end, four triple-point-of-mercury cells were compared using the resistance ratio measurement of a standard platinum resistance thermometer to validate the calibration results obtained using the triple-point-of-mercury cells at KRISS. The triple-point temperatures of all the four cells, one of which is designated as the national standard cell, were within 0.3 mK of the national standard. Based on 13 experiments on the four triple-point-of-mercury cells, the uncertainty in the comparison of the triple-point-of-mercury cells was 0.08 mK, and the uncertainty in the realization of the triple-point temperature of mercury was 0.19 mK. The results of the intralaboratory comparison validated that utilizing any of the four triple-point-of-mercury cells would result in the realization of a temperature within 0.3 mK of the average value determined by two key international comparisons for the realization of -38.3844℃ following the ITS-90.