• 제목/요약/키워드: physical parameter

검색결과 866건 처리시간 0.031초

안정적인 햅틱 상호작용을 위한 등가 물리적 댐핑 추정 (Equivalent Physical Damping Parameter Estimation for Stable Haptic Interaction)

  • 김종필;서창훈;류제하
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.135-141
    • /
    • 2006
  • This paper presents offline estimation of equivalent physical damping parameter in haptic interaction systems where damping is the most important parameter for stability. Based on the previous energy bounding algorithm, an offline procedure is developed in order to estimate the physical damping parameter of a haptic device by measuring energy flow-in to the haptic device. The proposed method does not use force/torque sensor at the handgrip. Numerical simulation and experiments verified effectiveness of the proposed method.

  • PDF

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

연계모수를 이용한 가속수명시험 통합모형의 개발 (Development of Integrated Model for Accelerated Life Test Using Linkage Parameter)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제9권5호
    • /
    • pp.43-48
    • /
    • 2007
  • This paper is to present linkage parameter to integrate statistical models and physical models for accelerated life test. Statistical models represent the relationship of probability distribution and life. Physical models show the relationship of life and stress. Moreover, this study proposes the four steps for construction of integrated models for accelerated life test using linkage parameter. Finally, this paper develops new integrated models such as extreme value distribution-general Eyring, linearly increasing failure rate function-general Eyring, etc., and estimates various reliability measures.

Changes in Gait Parameter with Adolescent Idiopatic Scoliosis

  • Kim, Su-Hyon;Kim, Hyun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • 제26권3호
    • /
    • pp.136-139
    • /
    • 2014
  • Purpose: The purpose of this study will demonstrate that relationship between scoliosis and gait factor and foot weight bearing in ambulation. Methods: Subjects were 40 elementary students. A normal control group consisted of a total of 20 children without any known musculoskeletal disorders and an AIS group of 20 children with mild AIS (defined by a Cobb angle between 10 and $25^{\circ}$) were recruited. Measurements were scoliometer screening test, Cobb angle, gait parameter (rate of swing/stance phase, gait velosity), foot weight bearing (entire, fore, hind). Results: Scoliometer screening test (P = 0.000) and X-ray Cobb angle (P = 0.000) significant difference of group which was significantly higher in the AIS group. Gait parameter not showed significant difference. Forefoot weight bearing was significantly higher in the AIS group than more normal group. Conclusion: It seems that the results of weight bearing analysis in ambulation may be used in modifying rehabilitation programs for individual needs of patients with idiopathic scoliosis.

Application of the Artificial Coral Reef as a Coastal Erosion Prevention Method with Numerical-Physical Combined Analysis (Case Study: Cheonjin-Bongpo Beach, Kangwon Province, South Korea)

  • Hong, Sunghoon;Jeong, Yeon Myeong;Kim, Taeyoon;Huynh, Van Men;Kim, Inho;Nam, Jungmin;Hur, Dong Soo;Lee, Jooyong;Kwon, Soonchul
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.75-81
    • /
    • 2021
  • Artificial Coral Reefs (ACRs) have been introduced to help solve coastal erosion problems, but their feasibility has not been assessed with field data. This study conducted a feasibility analysis of ACRs on their erosion mitigation effects by performing a case study of Cheonjin-Bongpo beach, South Korea. A numerical-physical combined analysis was carried out using a SWAN model simulation and physical model test with a scale of 1/25 based on field observations of Cheonjin-Bongpo beach. Both Dean's parameter and the surf-scaling parameter were applied to comparative analysis between the absence and presence conditions of the ACR. The results for this combined method indicate that ACR attenuates the wave height significantly (59~71%). Furthermore, ACR helps decrease the mass flux (~50%), undertow (~80%), and maximum wave set up (~61%). The decreases in Dean's parameter (~66%) and the surf-scaling parameter suggest that the wave properties changed from the dissipative type to the reflective type even under high wave conditions. Consequently, an ACR can enhance shoreline stability.

무차원계수를 이용한 왕복펌프의 성능평가 방법 개발 (A development off displacement pump performance evaluation method by using dimensionless parameter)

  • 조희근;윤진하;전종길;김경원;이인복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.731-734
    • /
    • 2002
  • There have been no obvious design criteria of high efficient displacement pump using a dimensionless parameter which can represent many physical aspect of displacement pump could be very useful to estimate displacement pump performance. Many dimensionless analysis methods have been developed in fluid dynamics, machine design and so on. In this study a new dimensionless parameter is developed for estimate displacement pump performance and efficiency, until now to evaluate the performance of displacement pumps which are widely used in industry field, primarily experimental methods have been used. The dimensionless parameter contains many physical information about pump design. For example, they are the relation between flow rate and power, displacement operation displacement and size, inlet and outlet valve size. And the developed dimensionless functions are induced from numerical method.

  • PDF

다운증후군 성인의 보행 특성과 족저압에 관한 연구 (The Study of Gait Parameter and Plantar Foot Pressure during Walking in Adults with Down Syndrome)

  • 구현모
    • 대한물리의학회지
    • /
    • 제7권1호
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose : The purpose of this study was to examine the gait parameter and plantar foot pressure of adults with Down syndrome(DS) during walking in order to provide data for developing evidence-based deficit or common rehabilitation strategies. Method : 15 participants with DS(12 men, 3 women; age $26.06{\pm}4.47$) and 15 healthy subjects(12 men, 3 women; age $25.33{\pm}3.43$) were matched age. They walked at self selected speeds on a GAITRite system and RS-scan system, and had the following measurements done: cadence, stride length, step width, foot angle, percent stance, percent double support, and plantar foot pressure in 10 areas of the foot. Results : In comparison of gait parameter(cadence, stride length, step width, foot angle, percent stance, and percent double support) between adults with DS and healthy subjects, there was significant differences(p<.05). Regarding plantar foot pressure during gait with or without DS, there were statisically significant differences in the area of Toes 1-5, Metatasal 1-4, Midfoot, and Heel(Medial and lateral)(p<.05). Conclusion : Our data show that DS walk with a less physiolosical gait pattern and plantar foot pressure than healthy subjects. Based on our results, DS patients need targeted rehabilitation and exercise strategies.

상태 파라메터 기반의 온라인 성능 신뢰도 (Condition Parameter-based On-line Performance Reliability)

  • 김연수;정영배
    • 산업경영시스템학회지
    • /
    • 제30권3호
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents the conceptual framework for estimating and predicting system's susceptibility to failure as function of condition parameter value which is representing the current status of performance measure using on-line performance reliability. The performance of such system depends on one parameter with a probability distribution that degrades with time gracefully. Performance reliability represents the probability that physical performance will remain satisfactory over a finite period of time or usage cycles in the future. An empirical physical performance function is constructed to incorporate explanatory variables (operating and environmental conditions) over a time or usage dimension. This function enables one to model device performance and the associated classical reliability measures simultaneously, in the performance domain and time domain. The conditional performance reliability structure developed represents a tool to predict system performance over time or usage for next usage period. By enabling such a framework, it can bring us more efficient planning and execution in system's operation control as well as maintenance to reduce costs and/or increase profits.

댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델 (Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir Systems)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.143-150
    • /
    • 2000
  • A physical lumped parameter model is proposed for the time domain analysis of dam-reservoir system. The exact solution of transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and the domains. Mass and damping coefficient are obtained from asymptotic behavior of the frequency domain solution. Further refinement to the lumped model is made by approximating the kernel function of the convolution integral in the exact solution. Finally a new physical lumped parameter model is proposed that consists of two masses, a spring and two dampers for each mode. It is demonstrated that new lumped parameter model of transmitting boundary can give excellent results.

  • PDF