• Title/Summary/Keyword: physical model investigation

Search Result 226, Processing Time 0.027 seconds

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik;Gokhan Altay;Cafer Kayadelen
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.425-435
    • /
    • 2023
  • Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

Axisymmetric deformation of thick circular plate in microelongated thermoelastic solid

  • Rajneesh Kumar;Aseem Miglani;Ravinder Kumar
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.231-245
    • /
    • 2024
  • In the present work, a microelogated thermoelastic model based on Lord-Shulman (1967) and Green-Lindsay (1972) theories of thermoelasticity has been constructed. The governing equations for the simulated model are converted into two-dimensional case and made dimensionless for further simplification. Laplace and Hankel transforms followed by eigen value approach has been employed to solve the problem. The use of eigen value approach hasthe advantage of finding the solution of governing equationsin matrix form notations. This approach is straight forward and convenient for numerical computation and avoids the complicate nature of the problem. The components of displacement,stress and temperature distribution are obtained in the transformed domain. Numerical inversion techniques have been used to invert the resulting quantities in the physical domain. Graphical representation of the resulting quantities for describing the effect of microelongation are presented. A special case is also deduced from the present investigation. The problem find application in many engineering problems like thick-walled pressure vesselsuch as a nuclear containment vessel, a cylindricalroller etc.

Effect of Foundation Stiffness on Behavior of Soil-reinforced Segmental Retaining Walls (기초지반의 강성이 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.7-19
    • /
    • 2002
  • This paper presents the results of an investigation on the effect of foundation stiffness on the performance of soil-reinforced segmental retaining walls (SRWalls). Laboratory model tests were performed using a reduced-scale physical model to capture the fundamentals of the manner in which the foundation stiffness affects the behavior of SRWalls. A series of finite-element analyses were additionally performed on a prototype wall in order to supplement the findings from the model tests and to examine full-scale behavior of SRWalls encountered in the field. The results of the present investigation indicate that lateral wall displacements significantly increase with the decrease of the foundation stiffness. Also revealed is that the increase in wall displacements is likely to be caused by the rigid body movement of the reinforced soil mass with negligible internal deformation within the reinforced soil mass. The findings from this study support the current design approaches, in which the problem concerning the foundation condition are treated in the frame work of the external stability rather than the internal stability. The implications of the findings from this study to current design approaches are discussed in detail.

Investigation of Dispersion and Storage Processes of Pollutants in Natural Streams (자연하천에서 오염물질의 확산 및 저장에 관한 연구)

  • 서일원;유대영
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.107-118
    • /
    • 1995
  • Mathematical models have been developed in which storage-relaease processes of pollutants are modeled to explain storage effect of variations of flow and channel geometry on mixing and transport of polluted releases in natural channels including low flow conditions. The models were tested by using the laboratory dispersion data. Comparisons between concentration-time curves predicted by using the proposed model incorporating two different submodels show that Storage-Diffusion Model seems to be superior in explaining physical processes inside the storage zone to the Storage-Exchange Model even though accuracies of simulation results by two models are about the same. The proposed model shows significant improvement over the conventional one-dimensional dispersion model in predicting natural mixing processes in open channels.

  • PDF

IMPRESSION-DRIVEN DESIGN SCHEME FOR A CLASS OF 3D OBJECTS BASED ON MORPHABLE 3D SHAPE MODEL, AND ITS AUTOMATIC BUILDUP BY SUPPLEMENTARY FEATURE SAMPLING

  • Inaba, Yoshinori;Kochi, Jumpei;Ishi, Hanae;Gyoba, Jiro;Akamatsu, Shigeru
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.606-611
    • /
    • 2009
  • This paper describes a method for achieving a novel design within a class of 3D objects that would create a preferred impression on users. Physical parameters of the 3D objects that might strongly contribute to their visual impressions are sought through computational investigation of the impression ratings obtained for learning samples. "Car body" was selected as the class of 3D objects to be investigated. A morphable 3D model of car bodies that describes the variations in appearance using a smaller number of parameters was obtained. Based on each car body's rating for the impression of speediness obtained by paired comparison, the visual impression was transformed by manipulating the parameters defined in the morphable 3D model. The validity of the proposed method was confirmed by psychological experiments. A new scheme is also proposed to properly re-sample a novel object of a peculiar shape so that such an object could also be represented by the morphable 3D model.

  • PDF

Design of Standard Model for 3D Cadastre System Development (3D 지적시스템 개발을 위한 표준모델 설계)

  • Jung, Young-Jin;Kwak, Byung-Yong;Koh, June-Hwan
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.1
    • /
    • pp.193-205
    • /
    • 2015
  • The existing 2D cadastre as the core engine of land administration systems met with the difficulty of managing and representing the real 3D world. As a result, a 3D cadastre system has emerged as a solution oriented towards managing, representing and providing 3D spatial information related to physical status, land rights, restrictions and responsibilities. The aim of this study is to establish the foundation of the 3D cadastre information system. With this in mind, this paper aims not only to set up the data range of the 3D cadastre, but also to design a conceptual model based on an LADM (Land Administration Domain Model) through the investigation of legal restrictions and land uses relating to spaces in 3D.

Investigation on the Pollutant Delivery Characteristics using Physically Based Watershed Model (물리적 기반의 유역모형을 이용한 오염물질 유달 특성 규명)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.256-267
    • /
    • 2009
  • A method of estimating pollutant delivery ratios considering watershed physical and meteorological characteristics and flow conditions using SWAT-K watershed model was described, and pollutant delivery characteristics during dry and rainy seasons, for monthly and seasonally, and with flow regimes were investigated for the Chungju dam watershed. Delivery ratios for sediment, T-N, and T-P showed higher values over 100% during dry and winter seasons with low pollutant loads and flows, and showed relatively uniform ones under 100% during rainy and summer seasons with concentrated loads and flows. It was found that mainly wet flows during summer seasons played very important roles in investigating the delivery characteristics of total or nonpoint pollutant loads, because more than 90% of total loads were influenced by nonpoint source, and discharged with the flows. From the results, we could find out the delivery characteristics with various watershed and flow conditions which are difficult to consider by actual measurement, and could get a foothold of estimating more reasonable and scientific allocated loads for water quality standard using the reliable method of estimating delivery ratios with a watershed model.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

Experimental study of extracting artificial boundary condition frequencies for dynamic model updating

  • Hou, Chuanchuan;Mao, Lei;Lu, Yong
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.247-261
    • /
    • 2017
  • In the field of dynamic measurement and structural damage identification, it is generally known that modal frequencies may be measured with higher accuracy than mode shapes. However, the number of natural frequencies within a measurable range is limited. Accessing additional forms of modal frequencies is thus desirable. The present study is concerned about the extraction of artificial boundary condition (ABC) frequencies from modal testing. The ABC frequencies correspond to the natural frequencies of the structure with a perturbed boundary condition, but they can be extracted from processing the frequency response functions (FRF) measured in a specific configuration from the structure in its existing state without the need of actually altering the physical support condition. This paper presents a comprehensive experimental investigation into the measurability of the ABC frequencies from physical experiments. It covers the testing procedure through modal testing, the data processing and data analysis requirements, and the FRF matrix operations leading to the extraction of the ABC frequencies. Specific sources of measurement errors and their effects on the accuracy of the extracted ABC frequencies are scrutinised. The extracted ABC frequencies are subsequently applied in the damage identification in beams by means of finite element model updating. Results demonstrate that it is possible to extract the first few ABC frequencies from the modal testing for a variety of artificial boundary conditions incorporating one or two virtual pin supports, and the inclusion of ABC frequencies enables the identification of structural damages without the need to involve the mode shape information.

Application of Bayesian Multilevel Space-Time Models to Study Relative Risk of Esophageal Cancer in Iran 2005-2007 at a County Level

  • Rastaghi, Sedigheh;Jafari-Koshki, Tohid;Mahaki, Behzad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5787-5792
    • /
    • 2015
  • Background: Reported age standardized incidence rates for esophageal cancer in Iran are 0.88 and 6.15 for females and males, at fifth and the eighth ranks, respectively, of cancers overall. The present study aimed to map relative risk using more realistic and less problematic methods than common estimators. Materials and Methods: In this ecological investigation, the studied population consisted of all esophageal cancer patients in Iran from 2005 to 2007. The Bayesian multilevel space-time model with three levels of county, province, and time was used to measure the relative risk of esophageal cancer. Analyses were conducted using R package INLA. Results: The total number of registered patients was 7,160. According to the results, the three-level model with adjustment for risk factors of physical activity and smoking had the best fit among all models. The overall temporal trend was significantly increasing. At county level, Ahar, Marand, Salmas, Bojnoord, Saghez, Sarakhs, Shahroud and Torbatejam had the highest relative risks. Physical activity was found to have significant direct association with risk of developing esophageal cancer. Conclusions: Given to great variation across geographical areas, many different factors affect the incidence of esophageal cancer. Conducting further studies at the individual level in areas with high incidence could provide more detailed information on risk factors of esophageal cancer.