• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.032 seconds

The Output Characteristics of 3kW BIPV System (건물일체형 태양광발전시스템의 실증분석)

  • Kim, Ji-Hoon;Jie, Bian Wen;Lee, Kang-Yeon;Kim, Pyoung-Ho;Oh, Geum-Gon;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF

Analyses of the Output Characteristics and the Change of Internal Impedance of Dye-sensitized Solar Cell According to the Adsorption Time (염료흡착 시간에 따른 염료감응형 태양전지의 출력 특성 및 내부 임피던스 분석)

  • Kim, Hee-Je;Lee, Jeong-Gee;Seo, Hyun-Woong;Son, Min-Kyu;Shin, In-Young;An, Tae-Pung;Kim, Jin-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.102-107
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) has been expected to be an alternative to the conventional silicon solar cell due to simple manufacturing process and low fabrication casts. In order to improve productivity of DSC, we attempted to optimize the required time of the adsorption process. According to the change in the adsorption time from 1 to 24h, We analyzed the output characteristics and the change of internal impedance. As a result, The outputs of DSC were continuously increased until 12h of the adsorption time and remained the same after that. Also, We reconfirmed this result that 12h was optimum adsorption by the analysis of the electrochemical impedance spectroscope because the internal impedance was similar to the output.

Simulations of Optical Characteristics according to the Silicon Oxide Pattern Distance Variation using an Atomic Force Microscopy (AFM) (AFM을 이용한 나노 패턴 형성과 크기에 따른 광특성 시뮬레이션)

  • Hwang, Min-Young;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.440-443
    • /
    • 2010
  • We report a top-down approach based on atomic force microscopy (AFM) local anodic oxidation for the fabrication of the nano-pattern field effect transistors (FETs). AFM anodic oxidation is relatively a simple process in atmosphere at room temperature but it still can result in patterns with a high spatial resolution, and compatibility with conventional silicon CMOS process. In this work, we study nano-pattern FETs for various cross-bar distance value D, from ${\sim}0.5\;{\mu}m$ to $1\;{\mu}m$. We compare the optical characteristics of the patterned FETs and of the reference FETs based on both 2-dimensional simulation and experimental results for the wavelength from 100 nm to 900 nm. The simulated the drain current of the nano-patterned FETs shows significantly higher value incident the reference FETs from ${\sim}1.7\;{\times}\;10^{-6}A$ to ${\sim}2.3\;{\times}\;10^{-6}A$ in the infrared range. The fabricated surface texturing of photo-transistors may be applied for high-efficiency photovoltaic devices.

A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance (높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구)

  • Jung, Eun-Sik;Jeong, Se-Jin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode (상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Hong, Ji-Tae;Chae, Won-Yong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Study on Current Collector for All Vanadium Redox Flow Battery (전바나듐계 레독스플로우전지용 집전체에 대한 연구)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.240-248
    • /
    • 2011
  • All-vanadium redox flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide range of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. Among consisting elements of the VRFB, the ion exchange membrane and the electrode play important roles. In this study, carbon PVC coposite sheets for the VRFB have been developed and electrochemical characteristics investigated. Current collector for VRFB, carbon PVC composite sheets (CPCS), were prepared with G-1028 as a conducting particle, PVC as a polymer, Dibutyl phthalate (DBP) as a plasticizer and fumed Silica (FS) as a dispersion agent. CPCS has been shown to have the characteristics as an excellent current collector for VRFB and electrochemical properties of specific resistivity 0.31 ${\Omega}cm$, which were composed of G-1028 80 wt%, PVC 10 wt%, DBP 5 wt% and FS 5 wt%.

Transient Response Improvement at Startup of Three Phase AC/DC Converter for DC Distribution System in Building Applications (빌딩용 직류배전 시스템의 3상 AC/DC 컨버터의 기동 시 과도상태 응답 개선)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Lee, Jung-Hyo;Na, Jong-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.138-144
    • /
    • 2013
  • Most of the DC loads have had the sensitive characteristics electrically for input voltage. In this system, power converter is operated after connecting with DC loads to minimize the overshoot of the control voltage that may occur during connection of the loads. But whenever starting the power converter, parameters in circuit are different because power converter has been connected with diverse load types at each startup time. This is cause of a disadvantage to PI controller design of power converter. In this paper, the novel voltage control method using sliding mode control theory has proposed. This control method minimizes the overshoot of control voltage at startup of power converter. Despite the variations of the system parameters, the proposed voltage controller has fast response and robustness characteristics such as PI and sliding mode controllers. The proposed controller was applied to the three-phase AC/DC converter and each performance of controller was verified.

Improving the power of PV module by a surface cooling system (표면냉각을 통한 PV 모듈의 출력 향상에 관한 연구)

  • Kim, Dae-Hyun;Kim, Dong-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.88-93
    • /
    • 2009
  • This study was conducted to improve the power of PV module using a surface cooling system One of the unique characteristics of PV module is power drop as a module surface temperature increases due to the characteristics of crystalline silicon used in a solar cell. To overcome the output power reduction by temperature effect, module surface cooling using water circulation was performed. By cooling effect, module surface temperature drops maximally $20.3^{\circ}C$ predicting more than 10% power enhancement. Maximum deviation of voltage and current between a control and cooled module differed by 5.1 V and O.9A respectively. The maximum power enhancement by cooling system was 12.4% compared with a control module. In addition, cooling system can wash the module surface by water circulation so that extra power up of PV module can be achieved by removing particles on the surface which interfere solar radiation on the cells. Cooling system, besides, can reduce the maintenance cost and prevent accidents as a safety precaution while cleaning works. This system can be applied to the existing photovoltaic power generation facilities without any difficulties as well.

A Novel Grid-Connected PV PCS with New High Efficiency Converter

  • Min, Byung-Duk;Lee, Jong-Pil;Kim, Jong-Hyun;Kim, Tae-Jin;Yoo, Dong-Wook;Ryu, Kang-Ryoul;Kim, Jeong-Joong;Song, Eui-Ho
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.309-316
    • /
    • 2008
  • In this paper, new topology is proposed that can dramatically reduce the converter power rating and increase the efficiency of total PV system. Since the output voltage of PV module has very wide voltage range, in general, the DC/DC converter is used to get constant high DC voltage. According to analysis of PV characteristics, in proposed topology, only 20% power of total PV system power is needed for DC/DC converter. DC/DC converter used in proposed topology has flat efficiency curve at all load range and very high efficiency characteristics. The total system efficiency is the product of that of converter and that of inverter. In proposed topology, because the converter efficiency curve is flat all load range, the total system efficiency at the low power range is dramatically improved. The proposed topology is implemented for 200kW PCS system. This system has only three DC/DC converters with 20kW power rating each other. It is only one-third of total system power. The experiment results show that the proposed topology has good performance.