• Title/Summary/Keyword: photovoltaic characteristics

Search Result 732, Processing Time 0.047 seconds

The Influence of Changing PV Array Interconnections under a Non-uniform Irradiance

  • Ding, Kun;Feng, Li;Qin, Si-Yu;Mao, Jing;Zhang, Jing-Wei;Wang, Xiang;Peng, Tao;Zhai, Quan-Xin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.631-642
    • /
    • 2016
  • Usually, the output characteristics of a photovoltaic (PV) array are significantly affected by non-uniform irradiance which is caused by ambient obstacles, clouds, orientations, tilts, etc. Some local maximum power points (LMPP) in the current-voltage (I-V) curves of a PV array can result in power losses of the array. However, the output power at the global maximum power point (GMPP) is different in different interconnection schemes in a PV array. Therefore, based on the theoretical analysis and mathematical derivation of different topological structures of a PV array, this paper investigated the output characteristics of dual series PV arrays with different interconnections. The proposed mathematical models were also validated by experimental results. Finally, this paper also concluded that in terms of performance, the total cross tied (TCT) interconnection was not always the optimal structure, especially in a dual series PV array. When one of the PV modules was severely mismatched, the TCT worked worse than the series parallel (SP) structure. This research can provide guidance for switching the interconnection to gain the greatest energy yield in a changeable- structure PV system.

Performance Assessment of Sputter-Coating-Colored BIPV Modules Through Field Test (현장 실험을 통한 Sputter Coating 컬러 BIPV 모듈의 발전성능 평가)

  • Lee, Hyo-Mun;Yoon, Jong-Ho;Kim, Hyun-Il;Lee, Gun-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.1-12
    • /
    • 2020
  • To assess the performance and characteristics of colored building-integrated photovoltaic (BIPV) modules, a comparative assessment of empirical performance was conducted on colored BIPV modules (gray, blue, and orange) and general BIPV module. These modules were installed on the south-facing slope (30°) for comparative assessment through a field test. Monitoring data were collected every 10 min from December 20, 2019 to January 21, 2020 and used to performance and characteristics analysis. Performance ratio and module efficiency were utilized during performance indexing for comparative assessment. For general BIPV modules, the operational efficiency was analyzed at 16.63%, whereas for colored BIPV modules, 13.70% (gray), 15.12 % (blue), and 14.49% (orange) were analyzed. It was discovered that the efficiency reduction caused by transmission losses owing to the application of colored cover glasses were 17.74% (gray), 9.05% (blue), and 9.86 % (orange), under field testing conditions. These values turned on an additional 7% reduction in efficiency for gray BIPV modules, compared to the degradation resulting from transmission drop (gray: 10.87%, blue: 8.99%, and orange: 9.02%) calculated using the efficiency of each module in standard test conditions (STC). Performance ratio analysis resulted in the following values: 0.92 for general BIPV modules, and 0.85 (gray), 0.91 (blue), and 0.91 (orange) for colored BIPV modules. As demonstrated by the above results, modules with a colored cover glass may differ in their operational performance depending on their color, unlike general modules. Therefore, in addition to the performance evaluation under STC, additional factors of degradation require consideration through field test.

Effects of Ag on the Characteristics of Sn48In52Agx (wt%) Low-Melting Solders for Photovoltaic Ribbon (태양광 리본용 Sn48In52Agx (wt%) 저융점 솔더의 특성에 미치는 Ag의 영향)

  • Seung-Han Lee;Dong-Hyeon Shin;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.74-78
    • /
    • 2024
  • We have studied the effects of Ag on the characteristics of Sn48In52Agx (wt%) low-melting solders for photovoltaic ribbons. The Sn48In52 (wt%) solder coexisted in the InSn4 and In3Sn alloys. Ag atoms added in the solder formed an AgIn2 alloy by reacting with some part of In atoms, while they did not react with Sn atoms. The addition of Ag atoms in the Sn48In52Agx (wt%) solders showed useful results; an increase in peel strength and a decrease in melting temperature. The peel strength of the ribbon plated with the Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn48In52Ag1 (wt%) solder largely increased to 125.1 N/mm2. In the meanwhile, the melting temperature of the Sn48In52 (wt%) solder was 119.2℃, and that of the Sn48In52Ag1 (wt%) solder decreased to 114.0℃.

Changes in the Energy Landscape from Multi-Level Perspective: A Case Study of the Photovoltaic Module Carbon Certification System (다층적 관점에서 바라본 에너지경관의 변동: 태양광 모듈 탄소인증제를 사례로)

  • Jang, Geunyong
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.367-385
    • /
    • 2021
  • This study examined changes in the energy landscape, focusing on the photovoltaic module carbon certification system. As the global photovoltaic market has been reorganized around Chinese companies, the South Korean government has pushed to strengthen the competitiveness of the nation's photovoltaic industry. However, a limitation remains in that the government-led effort was not sufficient to bring about dynamic changes in the energy landscape. Against this backdrop, this study explored the stages leading to the multi-level perspectives of "macro-environment, socio-technical regime, and niche" to track the process of the government and domestic photovoltaic companies as part of a socio-technical regime responding to global market changes. In particular, this study raised an issue with the conceptual discussion of multi-level perspective, which placed a particular emphasis on the rate of change at each level and the niche in which innovative experiments take place, and thus attempted to fill this gap by tracking the energy landscape that varies differently from space. These spatial discussions can track different carbon emissions coefficients and industrial characteristics for each country, and have a higher level of explanatory power for the system thus constructed. In addition, through discussions on the problems and implications of the government-led introduction of renewable energy policies, this study suggests the need to create and implement a field-oriented system.

태양광 어레이 모델링을 통한 최대출력점 고찰

  • 유권종;송진수;노명근;성세진;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.113-116
    • /
    • 1996
  • A model of a photovoltaic array written in PSPICE is presented in this paper. PSPICE is used to display array characteristics (I-V, P-V curve) as a function of parameters such as insulation and temperature. This paper is display in detail through a example of SM-50 model.

  • PDF

A Study on Power Balance Control for Photovoltaic/Wind/Diesel Hybrid Generation (태양광.풍력.디젤 복합발전을 위한 전력균형제어에 관한 연구)

  • Jeong, S.H.;Cho, J.S.;Gho, J.S.;Choe, G.H.;Kim, E.S.;Lee, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1388-1390
    • /
    • 2002
  • Hybrid power system has a power balanced controller to equilibrate generation power with a load demand and it is composed of DC bus-type power systems. And all of power generators in hybrid power system can be equivalent to current-source characteristics. So this paper discusses power balance control for photovoltaic/wind/diesel hybrid power system. And through the results of simulation, the proposed scheme was verified.

  • PDF

Optoelectronics based on 2D semiconductor heterostructures

  • Lee, Cheol-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.101.1-101.1
    • /
    • 2016
  • Van der Waals (vdW) heterostructures built from two-dimensional layered materials provide an unprecedented opportunity in designing new material systems because the lack of dangling bonds on the vdW surfaces enables the creation of high-quality heterointerfaces without the constraint of atomically precise commensurability. In particular, the ability to build artificial heterostructures, combined with the recent advent of transition metal dichalcogenides, allows the fabrication of unique semiconductor heterostructures in an ultimate thickness limit for fundamental studies as well as novel device applications. In this talk, we will present the characterization of the electronic and optoelectronic properties of atomically thin p-n junctions consisting of vertically stacked WSe2 and MoS2 monolayers. We observed gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. Unlike conventional bulk p-n junctions, the tunneling-assisted interlayer recombination of the majority carriers is responsible for the tenability of the charge transport and the photovoltaic response. Furthermore, we will discuss the enhanced optoelectronic characteristics in graphene-sandwiched vdW p-n junctions.

  • PDF

발전용 천연가스 일일수요 예측 모형 연구-평일수요를 중심으로

  • Jeong, Hui-Yeop;Park, Ho-Jeong
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • Natural gas demand for power generation continued to increase until 2013 due to the expansion of large-scale LNG power plants after the black-out of 2011. However, natural gas demand for power generation has decreased sharply due to the increase of nuclear power and coal power generation. But demand for power generation has increased again as energy policies have changed, such as reducing nuclear power and coal power plants, and abnormal high temperatures and cold waves have occurred. If the gas pipeline pressure can be properly maintained by predicting these fluctuations, it can contribute to enhancement of operation efficiency by minimizing the operation time of facilities required for production and supply. In this study, we have developed a regression model with daily power demand and base power generation capacity as explanatory variables considering characteristics by day of week. The model was constructed using data from January 2013 to December 2016, and it was confirmed that the error rate was 4.12% and the error rate in the 90th percentile was below 8.85%.

  • PDF

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

A study on the application of PV-AF-SPE hybrid system (PV-AF-SPE 복합시스템의 응용에 관한 연구)

  • Lee, Dong-Han;Lee, Suk-Ju;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.341-343
    • /
    • 2006
  • In this paper an integrated model of PV-AF (Photovoltaic-Active Filter) and PV-SPE (Photovoltaic Solid Polymer Electrolyte) system using PSCAD/EMTDC were explained in detail. The main concept of PV-AF system starts from the "harmonics". In order to deliver power to utility, PV system essentially needs a converter system. Here PV-AF system adds the function of active filter to the converter system installed in PV system, which was introduced already in several papers. PV-SPE system has been studied as a replacement of existing hydrogen production technology that emits large amount of carbon dioxide into atmosphere. Until now, these two systems, PV-AF and PV-SPE, have been considered separately. However, in this paper, characteristics and advantages of combined system are discussed in detail.

  • PDF