• 제목/요약/키워드: photovoltaic characteristics

검색결과 732건 처리시간 0.023초

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • 정선호;이병석;이지윤;서영희;김예나;;이재수;조예진;최영민;류병환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

태양광 발전시스템의 월별 일사량과 전력량 분석 (Analysis of Irradiation and Power per Each Months of Photovoltaic Systems)

  • 신현만;최용성;황종선;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

수상태양광 구조물의 강재특성에 관한 연구 (A Study on Steel Properties for Floating Photovoltaic System Structure)

  • 최영관
    • 한국산학기술학회논문지
    • /
    • 제15권8호
    • /
    • pp.5400-5405
    • /
    • 2014
  • 수상태양광을 개발하기 위해서는 무엇보다 가볍고 높은 인장을 갖는 재료를 적용하여 부력에 부담을 줄여주고 부식 저항이 높은 재료특성이 요구된다. 따라서 수상태양광발전 구조물에 적합한 강도, 내구성, 제작 및 용접성을 개선시킨 새로운 고강도 강재의 수상태양광 적용가능성 연구가 필요하다. 본 논문에서는 수상태양광에 적합한 강재선정을 위해 일반강재(SS400)와 고강도강재(POSH 690)의 기계적 하중시험과 강재의 부식시험을 수행하였다. 고강도 신소재강에 대한 시험결과 기존 일반 강재에 비해 기계적 성능이 우수한 것으로 검증되었고, 이 강재를 실제 현장에 제작하여 비교한 결과 기존 강재에 비해 중량이 30~40% 정도 중량감소 효과를 확인하였다.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

그림자 영향을 고려한 PV 시스템의 VPO MPPT 제어 (Development of VPO MPPT of PV System Considering Shadow Influence)

  • 최정식;고재섭;정동화
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.521-531
    • /
    • 2011
  • 본 논문은 그림자 영향을 고려한 PV(Photovoltaic) 시스템의 VPO(Variable Perturbation & Observation)MPPT(Maximum Power Point Tracking) 제어를 제시한다. 태양전지의 출력 특성은 비선형이고 온도, 일사량 및 그림자의 영향을 많이 받는다. MPPT 제어는 태양광발전 시스템의 출력 및 효율을 증가시키기 위한 매우 중요한 기술이다. 종래의 PO(Perturbation & Observation)와 IC(Incremental conductance) 등은 지속적인 자려진동에 의해 MPP(Maximum Power Point)를 찾는 방법으로 그림자 영향에 의해 출력이 급격하게 변할 경우 MPPT 제어를 수행하지 못한다. 이러한 문제점을 해결하기 위해 출력 변동에 따라 스텝 값이 변하는 새로운 제어 알고리즘을 제시한다. 제시한 알고리즘은 일사량, 온도 및 그림자 영향에 대해 종래의 제어 알고리즘과 응답특성을 비교하고 이를 통해 제시한 알고리즘의 타당성을 입증한다.

Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석 (Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy)

  • 허진희
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향 (Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics)

  • 이욱철;정명상;이준성;송희은;강민구;박성은;장효식;이상희
    • Current Photovoltaic Research
    • /
    • 제9권1호
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.

실리콘과 탄소 동시 스퍼터링에 의한 실리콘 양자점 초격자 박막 제조 및 특성 분석 (Fabrication and Characterization of Si Quantum Dots in a Superlattice by Si/C Co-Sputtering)

  • 김현종;문지현;조준식;박상현;윤경훈;송진수;오병성;이정철
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.289-293
    • /
    • 2010
  • Silicon quantum dots (Si QDs) in a superlattice for high efficiency tandem solar cells were fabricated by magnetron rf sputtering and their characteristics were investigated. SiC/$Si_{1-x}C_x$ superlattices were deposited by co-sputtering of Si and C targets and annealed at $1000^{\circ}C$ for 20 minutes in a nitrogen atmosphere. The Si QDs in Si-rich layers were verified by transmission electron microscopy (TEM) and X-ray diffraction. The size of the QDs was observed to be 3-6 nm through high resolution TEM. Some crystal Si and -SiC peaks were clearly observed in the grazing incident X-ray diffractogram. Raman spectroscopy in the annealed sample showed a sharp peak at $516\;cm^{-1}$ which is an indication of Si QDs. Based on the Raman shift the size of the QD was estimated to be 4-6 nm. The volume fraction of Si crystals was calculated to be about 33%. The change of the FT-IR absorption spectrum from a Gaussian shape to a Lorentzian shape also confirmed the phase transition from an amorphous phase before annealing to a crystalline phase after annealing. The optical absorption coefficient also decreased, but the optical band gap increased from 1.5 eV to 2.1 eV after annealing. Therefore, it is expected that the optical energy gap of the QDs can be controlled with growth and annealing conditions.

유전박막이 도포된 나노원뿔 패턴된 단결정 Si 기판의 광특성 (Optical Characteristics of Nanocone-patterned c-Si Wafers Coated with Dielectric Thin Films)

  • 김은아;박지민;고은지;김동욱
    • Current Photovoltaic Research
    • /
    • 제5권2호
    • /
    • pp.55-58
    • /
    • 2017
  • We investigated the influences of dielectric thin film coating on the optical characteristics of c-Si wafers with nanocone (NC) arrays using finite-difference time-domain (FDTD) simulations. Dielectric thin films on high-refractive-index surface can lower optical reflection and reflection dips appear at the wavelengths where destructive interference occurs. The optical reflection of the NC arrays was lower than that of the dielectric-coated planar wafer in broad wavelength range. Remarkable antireflection effects of the NC array could be attributed to beneficial roles of the NCs, including the graded refractive index, multiple reflection, diffraction, and Mie resonance. Dielectric thin films modified the optical reflection spectra of the NC arrays, which could not be explained by the interference alone. The optical properties of the dielectric-coated NC arrays were determined by the inherent optical characteristics of the NC arrays.

태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법 (Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence)

  • 서정민;이우철
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.