• Title/Summary/Keyword: photosystem II

Search Result 145, Processing Time 0.024 seconds

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

Evaluation of the Growth and Yield of Sweetpotato (Ipomoea batatas L.) at Different Growth Stages under Low Light Intensity (생육시기별 차광 처리에 의한 고구마 생육 및 수량성 평가)

  • Park, Won;Chung, Mi Nam;Nam, Sang-Sik;Kim, Tae Hwa;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Shin, Woon-Cheol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.2
    • /
    • pp.146-154
    • /
    • 2021
  • This study was conducted to determine the degree of reduction in the yield of sweetpotato subjected to different shading treatments according to the growing season of the typical viscous sweetpotato 'Hogammi' and the powdery sweetpotato 'Jinyulmi'. Shading was provided using commercially available shading nets (55% and 75% shading level), and the treatments were applied at the following stages of storage root growth: SFS: the storage root formation stage (planting-50th day), SSS: the storage root swelling stage (50-90th day), and SAS: the storage root actively swelling Stage (90-120th day). The growth characteristics according to shading treatments during each growth period, the number of tubers obtained at harvest, and sugar contents were investigated. For both assessed cultivars, there was no significant difference between the control group and the 55% shading treated group with respect to the maximum quantum yield (Fv/Fm) of photosystem II under different shading treatments, whereas the 75% shading group showed slightly higher values than the control group. In both cultivars, the contents of chlorophyll a and b tended to increase in plants subjected to shading treatments compared with the control plants, particularly that of chlorophyll b. Compared with the control group, the chlorophyll b content of 'Hogammi' subjected to 55% and 75% shading increased by 47% and 41%, respectively, whereas that of 'Jinyulmi' increased by 39% and 34%, respectively. We also detected reductions in the dry weights of the above- and belowground parts of the two varieties in response to shading compared with the control, with the reduction in the dry weight of belowground parts being significant. Furthermore, in both varieties, the T/R rate tended to increase in response to shading treatment. Owing to the lack of sunlight, both cultivars tended to suppress the formation and enlargement of tuber roots. Consequently, post-harvest yield analysis revealed that under shading treatments, both cultivars were characterized by poor tuber root growth according to growing season, with the yield of 'Hogammi' showing a greater reduction compared with that of 'Jinyulmi'. In addition, we found that the higher shading level also significantly reduced yields. Compared with the storage root formation and storage root actively swelling stages, shading treatments during the storage root swelling stage significantly affected yield reduction in both varieties.

Drought Stress Influences Photosynthesis and Water Relations Parameters of Synurus deltoides (건조스트레스가 수리취의 광합성 및 수분관련 특성에 미치는 영향)

  • Lee, Kyeong-Cheol;Lee, Hak Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.288-299
    • /
    • 2017
  • This study was conducted to find out the influence of drought stress on physiological responses of Synurus deltoides. Drought stress was induced by withholding water for 25 days. Leaf water potentials were decreased of both predawn (${\Psi}_{pd}$) and mid-day (${\Psi}_{mid}$) with increasing drought stress, but water saturation dificit (WSD) was 7 times increased. ${\Psi}_{pd}-{\Psi}_{mid}$ showed the significant difference of 0.22~0.18 MPa in stressed before 10 days, and nonsignificant as treatment time became longer. A strong reduction of stomatal conductance ($gH_2O$) and stomatal transpiration rate (E) were observed after 15 days of drought stress Significant reductions of net apparent quantum yield (${\Phi}$) and maximum photosynthesis rate ($Pn_{max}$) were observed after 20 days of drought stress; However, water use efficiency (WUE) was shown the opposite trend. This implies that decrease of photosynthesis rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. From JIP analysis, flux ratios (${\Psi}_O$ and ${\Phi}_{EO}$) and performance index on absorption basis ($PI_{ABS}$) were dramatically decreased withholding water after 15 days, which reflects the relative reduction of photosystem II activity. The leaf of S. deltoides showed osmotic adjustment of -0.35 MPa at full turgor and -0.40 MPa at zero turgor, and also cell-wall elastic adjustment of 9.4 MPa, indicating that S. deltoides tolerate drought stress through osmotic adjustment and cell-wall elastic adjustment. The degree of change in water relations parameters such as Vo/DW, Vt/DW decreased with increasing drought stress. This result showed that S. deltoides was exhibited a strong reduction of photosynthetic activity to approximately -0.93 MPa of predawn leaf water potential, and both of osmotic adjustment and cell-wall elastic adjustment in drought stress condition appears to be an important adaptation for restoration in this species.

Effect of Elevated Ultraviolet-B Radiation on Yield and Differential Expression of Proteome in Perilla (perilla frutescens L.) (잎들깨 수량과 단백질체 발현에 미치는 UV-B의 영향)

  • Hong, Seung-Chang;Hwang, Seon-Woong;Chang, An-Cheol;Shin, Pyung-Gyun;Jang, Byoung-Choon;Lee, Chul-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Plastichouse cultivation for crops and vegetables in the winter has been widely popularized in Korea. In the vinylhouse Ultraviolet B penetration is lower than in the field, and so some problems, as plant overgrowth and outbreak of disease, occurred frequently. The effect of artificial supplement ultraviolet B $(UV-B:280{\sim}320nm)$ radiation on the physiological responses and yield of perilla (perilla frutescens) was investigated UV-B ray was radiated on perilla with the 10th leaf stage at the distance of 90, 120 and 150 cm from the plant canopy for 30 days after planting in the vinylhouse. The production of fresh perilla leaves was high in the order of plastic house, ambient+50% of supplemental UV-B, ambient ambient+100% of supplemental UV-B. Enhanced UV-B radiation affected the intensity of thirty-three proteins in 2-dimensional electrophoretic analysis of proteins and ten proteins out of them seemed to be responsive to UV-B : a protein was, ATP synthase CF1 alpha chain, down regulated and nine proteins (Chlorophyll a/b bindng protein type I, Chlorophyll a/b binding protein type II precursor, Photosystem I P700 chlorophyll a apoprotein A2, DNA recombination and repair protein recF, Galactinol synthase, S-adenosyl-L-methionine, Heat shock protein 21, Calcium-dependent protein kinase(CDPK)-like, Catalase) were up-regulated.

Evaluation of waterlogging tolerance using chlorophyll fluorescence reaction in the seedlings of Korean ginseng (Panax ginseng C. A. Meyer) accessions (엽록소 형광반응을 이용한 인삼 유전자원의 습해 스트레스 평가)

  • Jee, Moo Geun;Hong, Young Ki;Kim, Sun Ick;Park, Yong Chan;Lee, Ka Soon;Jang, Won Suk;Kwon, A Reum;Seong, Bong Jae;Kim, Me-Sun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.240-249
    • /
    • 2022
  • Measuring chlorophyll fluorescence (CF) is a useful tool for assessing a plant's ability to tolerate abiotic stresses such as drought, waterlogging and high temperature. Korean ginseng is highly sensitive to water stress in paddy fields. To evaluate the possibility of non-destructively diagnosing waterlogging stress using chlorophyll fluorescence (CF) imaging techniques, we screened 57 ginseng accessions for waterlogging tolerance. To evaluate waterlogging tolerance among the 2-year-old Korean ginseng accessions, we treated ginseng plants with water stress for 25 days. The physiological disorder rate was characterized through visual assessment (an assigned score of 0-5). The physiological disorder rates of Geumjin, Geumsun and GS00-58 were lower than that of other accessions. In contrast, lines GS97-62, GS97-69 and GS98-1-5 were deemed susceptible. Root traits, chlorophyll content and the reduction rates decreased in most ginseng accessions. Further, these metrics were significantly lower in susceptible genotypes compared to resistant ones. All CF parameters showed a positive or negative response to waterlogging stress, and this response continuously increased over the treatment time among the genotypes. The CF parameter Fv/Fm was used to screen the 57 accessions, and the results showed clear differences in Fv/Fm between the susceptible and resistant genotypes. Susceptible genotypes had an especially low Fv/Fm value of less than 0.8, reflecting damage to the reaction center of photosystem II. It is concluded that Fv/Fm can be used as a CF parameter index for screening waterlogging stress tolerance in ginseng genotypes.