• Title/Summary/Keyword: photonic image

Search Result 20, Processing Time 0.024 seconds

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

Efficient and Exact Extraction of the Object Wave in Off-axis Digital Holography

  • Jang, Jin;Jeon, Jun Woo;Kim, Jin Sub;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.547-553
    • /
    • 2018
  • In this paper, a new method for spatial filtering in digital holography is proposed and verified by simulations compared to conventional methods. The new method is based on the simultaneous acquisition of two digital holograms, which can be separated by distinct spatial modulation, in a single image. Two holograms are generated by two reference waves, which have different spatial modulation orientations. Then, the overlapping region between the DC term and the object wave in the first hologram can be replaced with a less-overlapping region of the object wave in the second hologram because the whole image contains two holograms where the same objective wave has been recorded. In the simulation results, it is confirmed that the reconstructed image by the new method has better quality than for the original method.

Image Reconstruction Method for Photonic Integrated Interferometric Imaging Based on Deep Learning

  • Qianchen Xu;Weijie Chang;Feng Huang;Wang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.391-398
    • /
    • 2024
  • An image reconstruction algorithm is vital for the image quality of a photonic integrated interferometric imaging (PIII) system. However, image reconstruction algorithms have limitations that always lead to degraded image reconstruction. In this paper, a novel image reconstruction algorithm based on deep learning is proposed. Firstly, the principle of optical signal transmission through the PIII system is investigated. A dataset suitable for image reconstruction of the PIII system is constructed. Key aspects such as model and loss functions are compared and constructed to solve the problem of image blurring and noise influence. By comparing it with other algorithms, the proposed algorithm is verified to have good reconstruction results not only qualitatively but also quantitatively.

Fiber Optic Engine for Full Color Mobile Display

  • Arabi, H.;An, S.;Oh, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.400-401
    • /
    • 2009
  • In this paper we report a micro projector including of RGB sources, a $3{\times}1$ Fiber Optic Color Synthesizer (FOCS), and a two dimensional micro mechanical scanning mirror. We further report a modifier micro collimator which can enhance the resolution of the screened image.

  • PDF

Near-infrared Subwavelength Imaging and Focusing Analysis of a Square Lattice Photonic Crystal Made from Partitioned Cylinders

  • Dastjerdi, Somayeh Rafiee;Ghanaatshoar, Majid;Hattori, Toshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • We study the focusing properties of a two-dimensional square-lattice photonic crystal (PC) comprising silica and germanium partitioned cylinders in air background. The finite difference time domain (FDTD) method with periodic boundary condition is utilized to calculate the dispersion band diagram and the FDTD method incorporating the perfectly matched layer boundary condition is employed to simulate the image formation. In contrast to the common square PCs in which the negative refraction effect occurs in the first photonic band without negative phase propagation, in our suggested model system, the frequency with negative refraction exists in the second band and in near-infrared region. In this case, the wave propagates with a negative phase velocity and the evanescent waves can be supported. We also discuss the dependency of the image resolution and its location on surface termination, source location, and slab thickness. According to the simulation results, spatial resolution of the proposed PC lens is below the radiation wavelength.

Fabrication and Linear & Nonlinear Optical Characterization of Photonic Crystals (포토닉 밴드갭 광결정의 제작과 선형 및 비선형 광학 특성 연구)

  • Ha Na Yeong;U Yeon Gyeong;Hwang Ji-Su;Jang Hye-Jeong;Park Byeong-Ju;U Jeong-Won
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.162-163
    • /
    • 2002
  • 1-D photonic band-gap structure is identified in a cholesteric liquid crystal system. The optical transmission spectrum is measured and compared with the theoretical analysis. Nonlinear transmission is measured near the band edge. Also 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

  • PDF

Fabrication and Optical Characterization of Colloidal 3-D Photonic Crystals

  • N. Y. Ha;Y. Woo;Park, Byungchoo;J. W. Wu
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.15-16
    • /
    • 2003
  • 3-D photonic band-gap structures are fabricated from dielectric colloidal polystyrene beads through a centrifuge method. The fabricated photonic crystals exhibit opalescent colors under white light and show a clear diffraction peak dependent on the incident angle of the light beam. Also the scanning electron microscope image was taken to verify the face-centered cubic crystal structure. Bragg's law and Snell's law are employed to describe the position of angle resolved diffraction peaks. It was shown that the optically deduced effective refractive index and lattice constants were in good agreement with the crystal structure identified by scanning electron microscope.

Thin film process of anodic aluminum oxidation for optoelectronic nano-devices (나노 광소자 응용을 위한 알루미늄 양극산화박막 공정)

  • Choi, Jae-Ho;Baek, Ha-Bong;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.106-107
    • /
    • 2007
  • We fabricated anodic aluminium oxides (AAO) on Si and sapphire substrates from the electrochemical reactions of thin AI films in an aqueous solution of oxalic acid. The thin AI films have deposited on Si and Sapphire substructure by using E-beam evaporation and thermal evaporation, respectively. The formation of AAO structures has investigated from FE-SEM measurement image and showed randomly distributed phase of nanoholes instead of the periodic lattice of photonic crystals. The AAO structure on sapphire shows the double layers of nanoholes.

  • PDF

Image Reconstruction Based on Deep Learning for the SPIDER Optical Interferometric System

  • Sun, Yan;Liu, Chunling;Ma, Hongliu;Zhang, Wang
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.260-269
    • /
    • 2022
  • Segmented planar imaging detector for electro-optical reconnaissance (SPIDER) is an emerging technology for optical imaging. However, this novel detection approach is faced with degraded imaging quality. In this study, a 6 × 6 planar waveguide is used after each lenslet to expand the field of view. The imaging principles of field-plane waveguide structures are described in detail. The local multiple-sampling simulation mode is adopted to process the simulation of the improved imaging system. A novel image-reconstruction algorithm based on deep learning is proposed, which can effectively address the defects in imaging quality that arise during image reconstruction. The proposed algorithm is compared to a conventional algorithm to verify its better reconstruction results. The comparison of different scenarios confirms the suitability of the algorithm to the system in this paper.

Quantitative Evaluation of Dislocation Density in Epitaxial GaAs Layer on Si Using Transmission Electron Microscopy

  • Kim, Kangsik;Lee, Jongyoung;Kim, Hyojin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • Dislocation density and distribution in epitaxial GaAs layer on Si are evaluated quantitatively and effectively using image processing of transmission electron microscopy image. In order to evaluate dislocation density and distribution, three methods are introduced based on line-intercept, line-length measurement and our coding with line-scanning method. Our coding method based on line-scanning is used to detect the dislocations line-by-line effectively by sweeping a thin line with the width of one pixel. The proposed method has advances in the evaluation of dislocation density and distribution. Dislocations can be detected automatically and continuously by a sweeping line in the code. Variation of dislocation density in epitaxial GaAs films can be precisely analyzed along the growth direction on the film.