DOI QR코드

DOI QR Code

Near-infrared Subwavelength Imaging and Focusing Analysis of a Square Lattice Photonic Crystal Made from Partitioned Cylinders

  • Received : 2013.03.12
  • Accepted : 2013.05.27
  • Published : 2013.06.25

Abstract

We study the focusing properties of a two-dimensional square-lattice photonic crystal (PC) comprising silica and germanium partitioned cylinders in air background. The finite difference time domain (FDTD) method with periodic boundary condition is utilized to calculate the dispersion band diagram and the FDTD method incorporating the perfectly matched layer boundary condition is employed to simulate the image formation. In contrast to the common square PCs in which the negative refraction effect occurs in the first photonic band without negative phase propagation, in our suggested model system, the frequency with negative refraction exists in the second band and in near-infrared region. In this case, the wave propagates with a negative phase velocity and the evanescent waves can be supported. We also discuss the dependency of the image resolution and its location on surface termination, source location, and slab thickness. According to the simulation results, spatial resolution of the proposed PC lens is below the radiation wavelength.

Keywords

References

  1. V. G. Veselago, "The electromagnetic of substances with simultaneously negative value of $\varepsilon$ and $\mu$," Sov. Phys. Usp. 10, 509-514 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699
  2. K. Y. Kim and S. Kim, "Complete tunneling of light via local barrier modes in a composite barrier with metamaterials," J. Opt. Soc. Korea 12, 314-318 (2008). https://doi.org/10.3807/JOSK.2008.12.4.314
  3. C. M. Lee, W. S. Shim, Y. Moon, and C. H. Seo, "Design of ultra-wide band-pass filter based on metamaterials applicable to microwave photonics," J. Opt. Soc. Korea 16, 288-291 (2012). https://doi.org/10.3807/JOSK.2012.16.3.288
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
  5. M. Zedler, C. Caloz, and P. Russer, "A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix scheme," IEEE Trans. Ant. Prop. 55, 2930-2941 (2007).
  6. A. K. Iyer and G. V. Eleftheriades, "Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification," Appl. Phys. Lett. 92, 131105 (2008). https://doi.org/10.1063/1.2904635
  7. J. M. Algarin, M. J. Freire, M. A. Lopez, M. Lapine, P. M. Jakob, V. C. Behr, and R. Marques, "Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging," Appl. Phys. Lett. 98, 014105 (2011). https://doi.org/10.1063/1.3533394
  8. V. M. Shalaev, "Optical negative index metamaterials," Nature Photonics 1, 41-48 (2007). https://doi.org/10.1038/nphoton.2006.49
  9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). https://doi.org/10.1126/science.1126021
  10. M. Notomy, "Theory of light propagation in strongly modulated photonic crystals: refraction-like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). https://doi.org/10.1103/PhysRevB.62.10696
  11. A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, "Experimental and theoretical evidence for subwavelength imaging in photonic crystals," Phys. Rev. Lett. 102, 154301 (2009). https://doi.org/10.1103/PhysRevLett.102.154301
  12. Y. Cui, K. Liu, S. Foland, K. H. Choi, M. Tinker, D. M. Farlane, and J. B. Lee, "Silicon-based thermo-optically tunable photonic crystal lens," IEEE Photon. Tech. Lett. 22, 21-23 (2010). https://doi.org/10.1109/LPT.2009.2035331
  13. Y. Cui, V. A. Tamma, J. Lee, and W. Park, "Mechanically tunable negative-index photonic crystal lens," IEEE Photon. J. 2, 1003-1012 (2010). https://doi.org/10.1109/JPHOT.2010.2091116
  14. M. Hofman, D. Lippens, and O. Vanbesien, "Image reconstruction using a photonic crystal based flat lens operating at 1.55 ${\mu}m$," Appl. Opt. 49, 5806-5813 (2010). https://doi.org/10.1364/AO.49.005806
  15. X. Wang, Z. F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two dimensional photonic crystal," Opt. Express 12, 2919-2924 (2004). https://doi.org/10.1364/OPEX.12.002919
  16. J. Li, M. H. Lu, T. Fan, X. K. Liu, L. Feng, Y. F. Tang, and Y. F. Chen, "All-angle negative refraction imaging effect with complex two-dimensional hexagonal photonic crystals," J. Appl. Phys. 102, 073538 (2007). https://doi.org/10.1063/1.2794860
  17. K. M. Lin and G. Y. Guo, "Uncoupled modes and all-angle negative refraction in walled honeycomb photonic crystals," J. Opt. Soc. Am. B 25, C75 (2008). https://doi.org/10.1364/JOSAB.25.000C75
  18. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). https://doi.org/10.1103/PhysRevB.68.045115
  19. Y. J. Huang, W. T. Lu, and S. Sridhar, "Alternative approach to all-angle negative refraction in two-dimensional photonic crystals," Phys. Rev. A 76, 013824 (2007). https://doi.org/10.1103/PhysRevA.76.013824
  20. Z. Tang, R. Peng, Y. Ye, C. Zhao, D. Fan, H. Zhang, and S. Wen, "Optical properties of a square-lattice photonic crystal within the partial band gap," J. Opt. Soc. Am. A 24, 379-384 (2007).
  21. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: imaging by flat lens using negative refraction," Nature 426, 404 (2003). https://doi.org/10.1038/426404a
  22. Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phys. Rev. B 68, 245110 (2003). https://doi.org/10.1103/PhysRevB.68.245110
  23. H. W. Wang, M. L. Wu, and L. W. Chen, "Focusing analysis of a complex photonic crystal slab with negative refraction," Physica B 405, 4157-4162 (2010). https://doi.org/10.1016/j.physb.2010.07.005
  24. S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269-4271 (2004). https://doi.org/10.1063/1.1814430
  25. F. Xia, M. Yun, M. Liu, J. liang, W. Kong, H. Tan, and W. Lv, "Negative refraction subwavelength imaging in a hexagonal two-dimensional annular photonic crystal," J. Appl. Phys. 113, 013109 (2013). https://doi.org/10.1063/1.4773338

Cited by

  1. Recovering the Colors of Objects from Multiple Near-IR Images vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.102