• Title/Summary/Keyword: photonic crystals

Search Result 166, Processing Time 0.062 seconds

A study of multiple-exposure nanosphere lithography for photonic quasi-crystals fabrication (광자 준결정 제작을 위한 다중 노광 나노구 리소그라피 연구)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.62-62
    • /
    • 2010
  • Photonic quasi-crystals(PQCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns. The multiple-exposing source is collimated laser beam and rotation, tilting system. The arrays of the PQCs exhibited variable lattice structures and shape the control of ratating angle ($\theta$), tilting angle ($\gamma$) and the exposure conditions. The used nanosphere size is upto the $1\;{\mu}m$. Images of prepared 2D PQCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the PQCs arrays of large area.

  • PDF

Anomalous Dispersion in Two-Dimensional Photonic Crystals (2차원 광결정의 비정상적인 광분산에 대한 연구)

  • 강동열;류한열;황정기;이용희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.22-23
    • /
    • 2001
  • 광결정(Photonic crystals)은 유전체를 주기적으로 배치한 구조인데, 이런 구조에 의해 1차원, 2차원, 또는 3차원적으로 빛을 제어할 수 있다. [1] 이런 주기적인 구조로 인해 광결정 내에서는 특정에너지와 특정 방향을 가진 빛이 진행하지 못하는 광밴드 갭(photonic band gap)뿐만 아니라 밴드구조와 밀접한 관계가 있는 비정상적인 광분산이 나타나기도 한다. 이러한 비정상적인 광분산에는 입사빔의 미세한 파장변화에 따른 PC내에서의 급격한 빛의 꺾임이나, 단일 파장의 입사빔이 두갈래로 갈라지는 현상, 또는 negative나 1보다 작은 굴절효과 등이 있는데, 이러한 현상을 해석하기 위한 것으로 광결정내의 고정된 진동수에 해당하는 점들을 2차원 k공간에서 표시한 분산곡선(dispersion surface)이 도입되었다. [2] (중략)

  • PDF

Fabrication of Artificial Crystal Architectures by Micro-manipulation of Spherical Particles

  • Takagi, Kenta;Kawasaki, Akira;Watanabe, Ryuzo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.910-911
    • /
    • 2006
  • We newly designed and manufactured a new arranging system for a three-dimensional artificial crystal of monosized micro particles. In this system, a robotic micro-manipulator accurately locates the spherical particle onto the lattice point, and subsequently fiber lasers micro-weld the contact points between the neighboring particles. Actually, one- and two-dimensional arrays were constructed using monosized tin particles with the diameter of 400 m. Moreover, due to optimization of the process parameters, we successfully constructed the artificial crystals of simple cubic and diamond structures. In particular, the diamond structure which can represent a large photonic band gap is expected to progress toward a practical photonic crystal device.

  • PDF

Biosensor Based on Distributed Bragg Reflector Photonic Crystals for the Detection of Protein A

  • Jung, Daehyuk
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • The functionalized photonic crystals of porous silicon biosensor was prepared for the application as a label-free biosensor based on distributed Bragg reflector interferometer. Prepared distributed Bragg reflector of porous silicon biosensor displayed sharp reflection in the optical reflective spectra. The mean of construction of molecular architectures on distributed Bragg reflector of porous silicon surfaces was investigated for the step-by-step binding interaction with amines, biotin, avidin, and biotinylated protein A. The subsequent introduction of avidin, and biotinylated protein A resulted in the reflectivity shifted to longer wavelengths, indicative of a change in refractive indices induced by binding of biomolecules.

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

Calculation of band structures and dispersion surfaces in two-dimensional photonic crystals using the FDTD method (FDTD 방법을 이용한 2차원 황자 크리스탈의 밴드 구조와 분산 곡선의 계산)

  • 홍수완;김창모;정교방
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.479-484
    • /
    • 2001
  • The analysis of photonic band gaps and anomalous dispersion phenomena in photonic crystals requires understanding of band structures and dispersion surfaces. We show the results of the calculation of band structures and dispersion surfaces for a few two- dimensional lattices, using the finite-difference time-domain method with periodic boundary conditions. In addition, localized defect modes the exist within the band gap are computed by the same method.

  • PDF

Voltage-dependent Fabrication of Anodic Alumina Nanostructures and the Application to Photonic Crystals (전압 변화에 따른 양극 산화알루미나 나노구조의 패턴 형성 및 광결정 응용)

  • Choi, Jae-Ho;Cho, Sung-Nam;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.62-63
    • /
    • 2008
  • Photonic crystas were fabricated using an anodic aluminum oxide(AAO) mask on GaN diode. The Photonic crystal structure has been investigated from Atomic Force Microscope(AFM). The hole diameter and lattice constant of photonic crystal are 60nm and 105nm, respectively. Photoluminescence of photonic crystal was enhanced and optical interference was increased by photonic crystal effect.

  • PDF

Colloidal Photonic Crystals with Quasi-Amorphous Structure: Angle-Independent Electrically Tunable Full Color Photonic Pixels

  • Kim, Dae-Hyeon;Jeong, Jae-Yeon;Ji, Seung-Uk;Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.278-278
    • /
    • 2010
  • Electrically tunable photonic band gap (PBG) materials based on crystalline structures have been developed for active components of display. Despite considerable advances, the intrinsic drawbacks of the crystalline PBG materials such as the strong angle dependent hue and difficulty of fabricating defect-free structures in large area have yet to be addressed for their practical applications. Here we report quasi-amorphous colloidal structures exhibiting angle-independent photonic colors in response to the electric stimuli. Moderately polydisperse colloidal Fe3O4@SiO2 nanoparticles dispersed in organic solvents exclusively form quasi-amorphous photonic materials at sufficiently high concentrations (> 30 wt%), and which reversibly reflect incident light in visible region ($\lambda$ peak = 490~655 nm) in response to the relatively low bias voltage (0~4 V). We show the angle-independent tunable photonic colors with the fast response time (50~170 ms) due to the isotropic nature of quasi-amorphous structures. Conventional vacuum injection technique is applicable for fabricating flexible full color photonic display pixels with various pre-defined shapes.

  • PDF