• Title/Summary/Keyword: photonic crystals

Search Result 166, Processing Time 0.029 seconds

Electro-optic Behavior of Photonic Crystals with Nematic Liquid-Crystal (액정을 이용한 광자결정의 형성과 전기광학 효과)

  • Kwon, Jang-Un;Han, Soon-Ku;Kang, Dae-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1933-1935
    • /
    • 2002
  • In this paper, we present a study of the structure and electro-optic behavior of hybrid liquid-crystal-silica sphere composite photonic crystals, formed by filling the (26% by volume) void space of fee (face centered cubic) silica opals infiltrated with a nematic liquid crystal. Three dimensional photonic crystals of visible range were fabricated via a self assembly method of silica spheres of submicron diameter. The expected fee structure was confirmed by scanning electron microscopy (SEM) of the dehydrated crystal with glass removed. The photonic crystal exhibited significant electric-field-induced shift of the optical Bragg reflection peak when the liquid crystal has the long molecular axis oriented parallel to the sphere surfaces.

  • PDF

Fabrication Technology for Improving Pattern Quality in Two-Dimensional Photonic Crystal Structure (2차원 광결정 제작에 패턴 특성을 향상시키기 위한 공정 기술)

  • 김해성;신동훈;김순구;이진구;이범석;김혜원;이재은;한영수;최영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.515-521
    • /
    • 2003
  • There are now many theoretical investigations and real manufactures for numerous applications of photonic crystals (PCs) associated with photonic band gap and photonic integrated circuits. However, there are some difficulties to design and fabricate the desired pattern quality. It is not easy to satisfy accurate critical dimension (CD) for patterns with arbitrary shapes and pitch sizes aligned in various directions. In this work, we report the optimum conditions to better fabricate and design, and greatly improve pattern quality in delineating two-dimensional (2D) PCs in the nanometer range using single- step e-beam lithography system with conventional exposure mode.

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF

Chiral liquid crystals in photonic device applications

  • Gleeson, Helen F.;Yoon, Hyung-Guen;Roberts, Nicholas W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.105-108
    • /
    • 2007
  • Chiral liquid crystals exhibit band-gap structures responsive to electrical and optical fields, providing wide-ranging opportunities for photonics applications. We discuss three aspects of this technology: optics of chiral nematic devices and removal of pitch jumps; optical switching of chiral nematic materials; and using novel phases in photonic devices.

  • PDF

Nano imprinting lithography fabrication for photonic crystal waveguides (나노 임프린트 공정에 의한 광자결정 도파로 제조공정)

  • Jung Une-Teak;Kim Chang-Soek;Jeong Myung-Yung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.498-501
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for manipulation of light. The existence of a photonic bandgap, a frequency range in which propagation of light is prevented in all direction, makes photonic crystal very useful in application where spatial localization of light is required for waveguide, beam splitter, and cavity. But fabrication of 3 dimensional photonic crystal is still difficult process. a concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air, and perforated with 2 dimensional lattice of hole. We show that the polymer slabs suspended in air with triangular lattice of air hole can exhibit the in-plane photonic bandgap for TE-like modes. The fabrication of Si master with pillar structure using hot embossing process was investigated for 2 dimensional low-index-contrast photonic crystal waveguide.

  • PDF

Lasing Characteristics of Dye-Doped Cholesteric Liquid Crystal

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.117-123
    • /
    • 2015
  • Cholesteric liquid crystals are one dimensional photonic band-gap materials due to their birefringence and periodic structure. Dye doped cholesteric liquid crystals are self-assembling, mirror-less, low threshold laser structures that exhibit distributed feedback. In this review paper, we have presented the development in the field of lasing characteristics of dye doped cholesteric liquid crystals.

Theoretical Consideration on Influences of Cavity or Pillar Shape on Band Structures of Silicon-Based Photonic Crystals

  • Ogawa, Yoshifumi;Tamura, Issei;Omura, Yasuhisa;Iida, Yukio
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2007
  • This paper describes physical meanings of various influences of cavity (or pillar) shape and filling factor of dielectric material on band structures in two-dimensional photonic crystals. Influences of circular and rectangular cross-sections of cavity (or pillar) arrays on photonic band structures are considered theoretically, and significant aspects of square and triangular lattices are compared. It is shown that both averaged dielectric constant of the photonic crystal and distribution profile of photon energy play important roles in designing optical properties. For the triangular lattice, especially, it is shown that cavity array with a rectangular cross-section breaks the band structure symmetry. So, we discuss this point from the band structure and address optical properties of lattice with a circular cross-section cavity.

Preparation and Optical Characterization of Photonic Crystal Smart Dust Encoded with Reflection Resonance (반사공명으로 인코딩된 광결정 스마트 먼지의 제조방법 및 광학적 특징)

  • Lee, Boyeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Cheol;Han, Jungmin
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 2010
  • Photonic crystals containing rugate structures from a single crystalline silicon wafer was obtained by using a sinoidal alternating current during an electrochemical etch procedure. Photonic crystals were isolated from the silicon substrate by applying an electropolishing current and were then made into particles by using an ultrasonic fracture in an ethanol solution to give a smart dust. Smart dusts exhibited their unique nanostructures and optical characteristics. They exhibited sharp photonic band gaps in the optical reflectivity spectrum. The size of smart dust obtained was in the range of 10-20 nm.

Fabrication of a Three-dimensional Terahertz Photonic Crystal Using Monosized Spherical Particles

  • Takagi, Kenta;Seno, Kazunori;Kawasaki, Akira
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.374-375
    • /
    • 2006
  • Three-dimensional artificial crystals with periodicity corresponding to terahertz wave lengths were fabricated by self-assembling monosized metal spherical particles. The metal crystals were weakly sintered to utilize them as templates. The metal templates were inverted to air spheres crystal embedded in dielectric resin though infiltration and etching. The resulting resin inverted crystals clearly presented the photonic stop gaps within terahertz wave region and the frequencies of the gaps were confirmed to agree well with calculation by plane wave expansion method.

  • PDF

Fabrication and Characterization of Electro-photonic Performance of Nanopatterned Organic Optoelectronics

  • Nil, Ri-Swi;Han, Ji-Yeong;Gwon, Hyeon-Geun;Lee, Gyu-Tae;Go, Du-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.134.2-134.2
    • /
    • 2014
  • Photonic crystal solar cells have the potential for addressing the disparate length scales in polymer photovoltaic materials, thereby confronting the major challenge in solar cell technology: efficiency. One must achieve simultaneously an efficient absorption of photons with effective carrier extraction. Unfortunately the two processes have opposing requirements. Efficient absorption of light calls for thicker PV active layers whereas carrier transport always benefits from thinner ones, and this dichotomy is at the heart of an efficiency/cost conundrum that has kept solar energy expensive relative to fossil fuels. This dichotomy persists over the entire solar spectrum but increasingly so near a semiconductor's band edge where absorption is weak. We report a 2-D, photonic crystal morphology that enhances the efficiency of organic photovoltaic cells relative to conventional planar cells. The morphology is developed by patterning an organic photoactive bulk heterojunction blend of Poly(3-(2-methyl-2-hexylcarboxylate) thiophene-co-thiophene) and PCBM via PRINT, a nano-embossing method that lends itself to large area fabrication of nanostructures. The photonic crystal cell morphology increases photocurrents generally, and particularly through the excitation of resonant modes near the band edge of the organic PV material. The device performance of the photonic crystal cell showed a nearly doubled increase in efficiency relative to conventional planar cell designs. Photonic crystals can also enhance performance of other optoelectronic devices including organic laser.

  • PDF