• Title/Summary/Keyword: photonic crystal fiber

Search Result 79, Processing Time 0.067 seconds

A Novel Photonic Crystal Fiber Sensor with Three D-shaped Holes Based on Surface Plasmon Resonance

  • Bing, Pibin;Sui, Jialei;Huang, Shichao;Guo, Xinyue;Li, Zhongyang;Tan, Lian;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.541-547
    • /
    • 2019
  • A novel photonic crystal fiber (PCF) sensor with three D-shaped holes based on surface plasmon resonance (SPR) is analyzed in this paper. Three D-shaped holes are filled with the analyte, and the gold film is deposited on the side of three planes. The design of D-shaped holes with outward expansion can effectively solve the uniformity problem of metallized nano-coating, it is beneficial to the filling of the analyte and is convenient for real-time measurement of the analyte. Compared with the hexagonal lattice structure, the triangular arrangement of the clad air holes can significantly reduce the transmission loss of light and improve the sensitivity of the sensor. The influences of the air hole diameter, the distance between D-shaped holes and core, and the counterclockwise rotation angle of D-shaped holes on sensing performance are studied. The simulation results show that the wavelength sensitivity of the designed sensor can be as high as 10100 nm/RIU and the resolution can reach 9.9 × 10-6 RIU.

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.

Study on the Fabrication Process of Polarization Maintaining Photonic Crystal Fibers and Their Optical Properties

  • Cho, Tai-Yong;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Sang-Bae;Jeong, Je-Myung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • In this paper, we describe the fabrication process and the characteristics of polarization maintaining photonic crystal fibers (PM-PCFs). The PM-PCF is fabricated by stack-and-draw method, i.e., stacking silica capillary tubes (making a PM-PCF preform) and drawing to optical fiber. Firstly, a PM-PCF preform is formed by stacking two kinds of capillary tubes around a solid silica rod and jacketing these stacked tubes with an outer silica tube (out-jacket tube). Later, the desired preform is drawn to a fiber in a high temperature drawing tower. We also compare the polarization properties such as polarization dependent loss, birefringence, and differential group delay of the fabricated PM-PCF with those of the conventional PANDA PM fiber.

Development of a Ultra Broadband Optical Coupler Based on a Photonic Crsytal Fiber (광자결정 광섬유기반 광신호 분배기 개발)

  • Yoon, Min-Seok;Lee, Sang-Bae;Han, Young-Geun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.195-199
    • /
    • 2010
  • A broadband optical coupler with a broad bandwidth of 1000 nm based on a photonic crystal fiber (PCF) is investigated. The PCF has 6 layers of air hole structures and a diameter of $130{\mu}m$. The PCF-based coupler is fabricated by using a fused biconical tapering method based on heating and elongation processes. Changing temperature and an elongation length can control the bandwidth and the bandedge wavelength of the PCF-based broadband coupler. The diameter of the fused region in the PCF-based coupler was measured to be $23{\mu}m$. The fabricated PCF-based coupler has a nearly-flat coupling ration of 3-dB in a broad bandwidth of 1000 nm, which is wider than that of the previously reported PCF-based coupler and that of the single-modefiber-based coupler. Since the resolution of optical coherence tomography system is proportional to the bandwidths of both an optical light sources and an interferometer, the fabricated PCF-based broadband optical coupler has a great potential for realization of a broadband interferogram.