• 제목/요약/키워드: photon beam

검색결과 388건 처리시간 0.034초

동일 기종 선형가속기간 8 MV 광자선에 대한 빔 매칭 정확도 평가 (Evaluation of Beam-Matching Accuracy for 8 MV Photon Beam between the Same Model Linear Accelerator)

  • 김연래;정진범;강성희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권2호
    • /
    • pp.105-114
    • /
    • 2020
  • This study aimed to assess of beam-matching accuracy for an 8 MV beam between the same model linear accelerators(Linac) commissioned over two years. Two models were got the customer acceptance procedure(CAP) criteria. For commissioning data for beam-matched linacs, the percentage depth doses(PDDs), beam profiles, output factors, multi-leaf collimator(MLC) leaf transmission factors, and the dosimetric leaf gap(DLG) were compared. In addition, the accuracy of beam matching was verified at phantom and patient levels. At phantom level, the point doses specified in TG-53 and TG-119 were compared to evaluate the accuracy of beam modelling. At patient level, the dose volume histogram(DVH) parameters and the delivery accuracy are evaluated on volumetric modulated arc therapy(VMAT) plan for 40 patients that included 20 lung and 20 brain cases. Ionization depth curve and dose profiles obtained in CAP showed a good level for beam matching between both Linacs. The variations in commissioning beam data, such as PDDs, beam profiles, output factors, TF, and DLG were all less than 1%. For the treatment plans of brain tumor and lung cancer, the average and maximum differences in evaluated DVH parameters for the planning target volume(PTV) and the organs at risk(OARs) were within 0.30% and 1.30%. Furthermore, all gamma passing rates for both beam-matched Linacs were higher than 98% for the 2%/2 mm criteria and 99% for the 2%/3 mm criteria. The overall variations in the beam data, as well as tests at phantom and patient levels remains all within the tolerance (1% difference) of clinical acceptability between beam-matched Linacs. Thus, we found an excellent dosimetric agreement to 8 MV beam characteristics for the same model Linacs.

피코초 펄스 레이저를 이용한 사파이어 웨이퍼 스크라이빙에 관한 연구 (A Study on Sapphire Wafer Scribing Using Picosecond Pulse laser)

  • 문재원;김도훈
    • 한국레이저가공학회지
    • /
    • 제8권2호
    • /
    • pp.7-12
    • /
    • 2005
  • The material processing of UV nanosecond pulse laser cannot be avoided the material shape change and contamination caused by interaction of base material and laser beam. Nowadays, ultra short pulse laser shorter than nanosecond pulse duration is used to overcome this problem. The advantages of this laser are no heat transfer, no splashing material, no left material to the adjacent material. Because of these characteristics, it is so suitable for micro material processing. The processing of sapphire wafer was done by UV 355nm, green 532nm, IR 1064nm. X-Y motorized stage is installed to investigate the proper laser beam irradiation speed and cycles. Also, laser beam fluence and peak power are calculated.

  • PDF

슈퍼컴을 이용한 전자빔가속기의 차폐설계 (Shielding Design of Electron Beam Accelerators Using Supercomputer)

  • 강원구;김인수;국승한;김진규;한범수;정광영;강창무
    • 방사선산업학회지
    • /
    • 제4권1호
    • /
    • pp.33-38
    • /
    • 2010
  • The MCNP5 neutron, electron, photon Monte Carlo transport program was installed on the KISTI's SUN Tachyon computer using the parallel programming. Electron beam accelerators were modeled and shielding calculations were performed in order to investigate the reduction of computation time in the supercomputer environment. It was observed that a speedup of 40 to 80 of computation time can be obtained using 64 CPUs compared to an IBM PC.

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • 제33권3호
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

표준 전자선 cone의 확장된 SSD에서의 선량평가 및 자체제작한 전자선 cone의 특성 (The Dosimetric evaluation of the standard electron cone for the extended cone for the extended SSD and The Dosimetric characteristics of the custom-made electron cone)

  • 정세영;정희영;김영범;권영호
    • 대한방사선치료학회지
    • /
    • 제11권1호
    • /
    • pp.73-78
    • /
    • 1999
  • In general, the patients of the head and neck cancer are treated with 4MV photon beam up to prescribed dose, but spinal cord should be excluded in the treatment field. When its absorbed dose is limited at the tolerance dose. In case of the patients who has the positive posterior neck nodes need a boost electron beam treatment to the prescribed dose. In that case, the anatomical structure of the neck and the physical structure of the standard electron cone interrupt to allow proper access to the disease site. Therefore, we extended treatment SSD for the remove of the those hindrances. In this study, we evaluated the dosimetric variation of the standard electron cone for the extended SSD, from 100cm to 120cm, 5 cm increment, and compare to the custom-made electron cone. As a result, the $\%$ depth dose, the point of maximum dose and the range of maximum were changed within the $2\%$. The penumbra width was increased from 1.0cm to 2.0cm. However, the dosimetric characteristics of the custom-made electron cone was very similar to that of the 100cm SSD standard electron cone and due to its characteristic of physical structure, patients didn't need re-positioning after photon beam treatment, therefore accurate treatment was possible, we conclude that the custom-made electron cone was very useful for the clinical practice.

  • PDF

CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식 유도 (Derivation of the Effective Energy Calculation Formula of the X-ray Beam Generated by the CT Simulator)

  • 김종언;이상훈
    • 한국방사선학회논문지
    • /
    • 제15권6호
    • /
    • pp.869-875
    • /
    • 2021
  • 이 연구의 목적은 CT 모의치료장치에서 발생된 X-선 빔의 유효에너지 계산식을 유도하는데 있다. 90, 120, 140 kVp X-선 빔 하에서, AAPM CT 성능 팬텀의 CT수 교정 삽입부는 CT 모의치료장치로 5번 스캔하였다. 폴리에틸렌, 폴리스틸렌, 물, 나일론, 폴리카보네이트, 그리고 아크릴의 CT수는 각각의 CT 슬라이스 영상에 대하여 측정하였다. 단일 관전압 하에서 측정된 CT수 평균값과 미국표준기술연구소의 자료로부터 계산된 각각의 광자에너지에 대응하는 선감쇠계수들을 선형정합하였다. 얻어진 상관계수들 중 최대값을 갖는 광자에너지를 유효에너지를 결정하였다. 이와 같은 방법으로, 각각의 관전압에서 생성된 X-선 빔의 유효에너지를 결정하였다. 결정된 유효에너지(y)들와 관전압(x)들을 선형정합하여 유효에너지 계산식으로서 y=0.33026x+30.80263을 유도하였다.

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • 한국의학물리학회지:의학물리
    • /
    • 제31권3호
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Optimization of block-matching and 3D filtering (BM3D) algorithm in brain SPECT imaging using fan beam collimator: Phantom study

  • Do, Yongho;Cho, Youngkwon;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3403-3414
    • /
    • 2022
  • The purpose of this study is to model and optimize the block-matching and 3D filtering (BM3D) algorithm and to evaluate its applicability in brain single-photon emission computed tomography (SPECT) images using a fan beam collimator. For quantitative evaluation of the noise level, the coefficient of variation (COV) and contrast-to-noise ratio (CNR) were used, and finally, a no-reference-based evaluation parameter was used for optimization of the BM3D algorithm in the brain SPECT images. As a result, optimized results were derived when the sigma values of the BM3D algorithm were 0.15, 0.2, and 0.25 in brain SPECT images acquired for 5, 10, and 15 s, respectively. In addition, when the sigma value of the optimized BM3D algorithm was applied, superior results were obtained compared with conventional filtering methods. In particular, we confirmed that the COV and CNR of the images obtained using the BM3D algorithm were improved by 2.40 and 2.33 times, respectively, compared with the original image. In conclusion, the usefulness of the optimized BM3D algorithm in brain SPECT images using a fan beam collimator has been proven, and based on the results, it is expected that its application in various nuclear medicine examinations will be possible.

Assessment of Temporary Radioactivation for Tissue Expanders in Breast Radiation Therapy: Preliminary Study

  • Hwajung Lee;Do Hoon Oh;Lee Yoo;Minsoo Chun
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.100-106
    • /
    • 2023
  • Background: As breast tissue expanders consist of metallic materials in the needle guard and ferromagnetic injection port, irradiation can produce radioactivation. Materials and Methods: A CPX4 (Mentor Worldwide LLD) breast tissue expander was exposed using the Versa HD (Elekta) linear accelerator. Two photon energies of 6 and 10 MV-flattening filter free (FFF) beams with 5,000 monitor units (MU) were irradiated to identify the types of radiation. Furthermore, 300 MU with 10 MV-FFF beam was exposed to the CPX4 breast tissue expander by varying the machine dose rates (MDRs) 600, 1,200, and 2,200 MU/min. To assess the instantaneous dose rates (IDRs) solely from the CPX4, a tissue expander was placed outside the treatment room after beam irradiation, and a portable radioisotope identification device was used to identify the types of radiation and measure IDR. Results and Discussion: After 5,000 MU delivery to the CPX4 breast tissue expander, the energy spectrum whose peak energy of 511 keV was found with 10 MV-FFF, while there was no resultant one with 6 MV-FFF. The time of each measurement was 1 minute, and the mean IDRs from the 10 MV-FFF were 0.407, 0.231, and 0.180 μSv/hr for the three successive measurements. Following 10 MV-FFF beam irradiation with 300 MU indicated around the background level from the first measurement regardless of MDRs. Conclusion: As each institute room entry time protocol varies according to the working hours and occupational doses, we suggest an addition of 1 minute from the institutes' own room entry time protocol in patients with CPX4 tissue expander and the case of radiotherapy vaults equipped with a maximum energy of 10 MV photon beams.

비균질 팬텀에서 소조사면에 대한 필름측정, 회선/중첩 모델과 몬테 카를로 모사의 비교 연구 (Comparison of Film Measurements, Convolution$^{}$erposition Model and Monte Carlo Simulations for Small fields in Heterogeneous Phantoms)

  • 김상노;제이슨손;서태석
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권2호
    • /
    • pp.89-95
    • /
    • 2004
  • 세기조절방사선치료(IMRT)에서는 일반적인 방사선 치료에서 사용되는 조사면에 비해 비교적 작은 크기의 빔조각(beamlet)을 사용하여 방사선의 세기를 조절하는 새로운 치료법으로 이에 대한 비균질 효과는 많은 연구가 필요하다. 우리는 기하학적으로 일정한 비균질 팬텀들에서 몬테카를로 시뮬레이션에 의한 선량값을 라디오크로믹 필름에 의한 선량값과 회선/중첩 방법에 의한 선량 계산 값과 서로 비교하였다. 몬테 카를로 모사를 위하여 EGS4 코드 기반의 BEAM 코드를 사용하였으며 이를 이용하여 Varian 2300C/D 선형가속기의 두부를 호사하였다. 측정과 모사에 사용된 조사면은 1${\times}$1$\textrm{cm}^2$, 2${\times}$2$\textrm{cm}^2$, 그리고 5${\times}$5$\textrm{cm}^2$이었다. 또한 팬텀의 물질은 솔리드 워터, 폐 등가 물질, 뼈 등가 물질을 사용하여 세 경우의 비극질 팬텀들을 설정하여 방사선을 조사하였다. 회선/중첩 방법과 몬테 카를로 방법에 의한 선량 계산치는 광자 측면선량의 경우 $\pm$1 mm, 깊이선량의 경우 $\pm$2% 이내로 선량측정치와 잘 일치함을 볼 수 있었다. 결론적으로 회선/중첩 방법과 몬테 카를로 방법이 소조사면에서도 필름 측정 데이터와 잘 일치함을 확인할 수 있었다.