• Title/Summary/Keyword: photon

Search Result 1,991, Processing Time 0.03 seconds

Center of Photon Mass as a Unified Design Parameter I : DFB Lasers with Low-and High-reflection Faets (DFB 레이저의 통합된 설계 변수로서으 광자 분포 중심 I : 저 반사면-고 반사면 구조)

  • Kim, Sung-Han;Kim, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.53-62
    • /
    • 1999
  • Center of photon mass(CPM), defined as the center of axial photon distribution, is proposed as a unified design parameter, which contains information about both threshold gain and nonuniformity of axial photon distribution in DFB lasers with low and high-reflection facets. The CPM is inversely proportional to threshold gain and is 0.5 when axial photon distribution is the most uniform. Therefore, a general rule of single-frequency leser design is that main mode CPM should be around 0.5 for-uniform axial photon distribution and side mode CPM should be minimized to maximize the threshold gain difference.

  • PDF

Pulsed Photostimulated Luminescence (PPSL) of Irradiated Importation Sesame and Perilla Seeds (방사선 조사된 수입 참깨, 들깨의 광여기 발광)

  • Yi, Sang-Duk;Woo, Si-Ho;Yang, Jae-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.173-177
    • /
    • 2001
  • A study was carried out to establish a detection method for imported sesame and perilla seeds using pulsed photostimulated luminescence (PPSL) whether they have been irradiated or not. Samples were packed in polyethylene bags and irradiated at 1, 5, and 10 kGy with a dose rate of 10 kGy/h. The whole sample of sesame and perilla and the minerals separated from seeds were introduced in the sample chamber and measured PPSL photon counts for 60 and 120 s. The PPSL photon counts of samples increased with increasing irradiation dose and showed a higher correlation coefficients in separated minerals than in sesame and perilla seeds themselves. These results suggest that imported sesame and perilla seeds be possibly detected by both their whole sample and separated minerals by PPSL measurements.

  • PDF

Visualization of Epidermis and Dermal Cells in ex vivo Human Skin Using the Confocal and Two-photon Microscopy

  • Choi, Sang-Hoon;Kim, Wi-Han;Lee, Yong-Joong;Lee, Ho;Lee, Weon-Ju;Yang, Jung-Dug;Shim, Jong-Won;Kim, Jin-Woong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The confocal laser scanning microscopy and two-photon microscopy was implemented based on a single laser source and an objective lens. We imaged and compared the morphology of identical sites of ex vivo human skin using both microscopes. The back-scattering emission from the sample provided the contrast for the confocal microscopy. The intrinsic autofluorescence and the second harmonic generation were used as the luminescence source for the two-photon microscopy. The wavelength of the Ti:Sapphire laser was tuned at 710 nm, which corresponds to the excitation peak of NADH and FAD in skin tissue. The various cell layers in the epidermis and the papillary dermis were clearly distinguished by both imaging modalities. The two-photon microscopy more clearly visualized the intercellular region and the nucleus of the cell compared to the confocal microscopy. The fibrous structures in the dermis were more clearly resolved by the confocal microscopy. Numerous cells in papillary dermal layer, as deep as $100\;{\mu}m$, were observed in both CLSM and two-photon microscopy. While most previous studies focused on fibrous structure imaging (collagen and elastin fiber) in the dermis, we demonstrated that the combined imaging with the CLSM and two-photon microscopy can be applied for the non-invasive study of the population, distribution and metabolism of papillary dermal cells in skin.

A Study of Double Dark Photons Produced by Lepton Colliders using High Performance Computing

  • Park, Kihong;Kim, Kyungho;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e+e- → A'A' and e+e- → A'A'γ where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.

Gradient Estimation for Progressive Photon Mapping (점진적 광자 매핑을 위한 기울기 계산 기법)

  • Donghee Jeon;Jeongmin Gu;Bochang Moon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.141-147
    • /
    • 2024
  • Progressive photon mapping is a widely adopted rendering technique that conducts a kernel-density estimation on photons progressively generated from lights. Its hyperparameter, which controls the reduction rate of the density estimation, highly affects the quality of its rendering image due to the bias-variance tradeoff of pixel estimates in photon-mapped results. We can minimize the errors of rendered pixel estimates in progressive photon mapping by estimating the optimal parameters based on gradient-based optimization techniques. To this end, we derived the gradients of pixel estimates with respect to the parameters when performing progressive photon mapping and compared our estimated gradients with finite differences to verify estimated gradients. The gradient estimated in this paper can be applied in an online learning algorithm that simultaneously performs progressive photon mapping and parameter optimization in future work.

Quality Control Using Contrast Scale in Computed Tomography Equipment (전산화단층촬영장치에서 대조도 척도를 이용한 품질관리)

  • Jong-Eon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.6
    • /
    • pp.707-713
    • /
    • 2024
  • In CT equipments, the contrast scale changes as the equipment ages. In order to maintain a constant contrast scale in clinical practice, users must perform periodic quality control. In this study, the contrast scale for each effective photon energy was determined and analyzed based on CT slice images of the CT number calibration block in the AAPM CT performance phantom. CT slice images of the CT number calibration block were obtained with five scans each at 80, 100, 120, and 140 kVp X-ray beams. In the 5 CT slice images obtained for each tube voltage, the average CT number of the averages was calculated from the average CT numbers measured by setting the region of interest to water and 5 pins. For water and 5 pins, a linear regression analysis was performed on the average CT number of the averages calculated for each tube voltage versus the line attenuation coefficient for each photon energy, and the photon energies with the largest correlation coefficients of 58.5, 65, 71, and 77 keV were found to be effective photon energies. decided. The line attenuation coefficient used to determine this effective photon energy was automatically determined as the effective linear attenuation coefficient. For the effective photon energy, a linear equation was obtained by linear regression analysis of the average CT number of the averages in water and the five pins versus the difference in effective linear attenuation coefficient between the five pins and water. The contrast scale was determined by taking the slope of the obtained linear equation as the reciprocal. The determined contrast scale is 0.000198 to 0.000177 cm-1 HU-1 in the effective photon energy range of 58.5 to 77 keV. The contrast scale decreased as the effective photon energy increased.

Postal Dosimetry Audits for the Domestic Medical Linear Accelerator

  • Kim, Kum Bae;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.20-28
    • /
    • 2020
  • Purpose: The objective of this study is to perform Postal dosimetry audits for medical linear accelerators in radiation therapy institutions using glass dosimeters and Gafchromic film reading systems and postal dosimetry audit procedures, and to evaluate radiation therapy doses and mechanical accuracy in medical institutions. Methods: Photon output measured and analyzed using a standard phantom for measuring photon output dose using a glass dosimeter for medical linear accelerators. Mechanical accuracy was measured and analyzed using software for film measurement. Results: Measurement and analysis of photon beam output dose using a standard phantom glass dosimeter for photon beam output dose measurement was completed. All tolerance doses were within 5%. Mechanical accuracy measurement and analysis using a standard phantom for verifying the mechanical accuracy of linear accelerator (LINAC) using a Gafchromic film were completed, and all results were shown within tolerances (2 mm or less). Conclusions: In this study, Postal dosimetry audits were performed on the output dose and mechanical accuracy of photon beams (207 beams) for 106 LINACs from 48 institutions. As a result of corrective action and re-execution, it was confirmed that all engines met the acceptable standard within 2 mm in the linear accelerator.

Organic Nanotube Induced by Photocorrosion of CdS Nanorod

  • Choi, Sung-Won;Yoon, Joong-Ho;An, Myoung-Jin;Chae, Won-Sik;Cho, Hyeon-Mo;Choi, Moon-Gun;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.983-985
    • /
    • 2004
  • PMMA-coated CdS nanorod was prepared by encapsulation of CdS nanorod through the polymerization process of PMMA on the surface of CdS nanorod. PMMA organic nanotube was then obtained from the elimination of the CdS nanorod by the photocorrosion. For the photocorrosion reaction of the CdS nanorod, monochromatic light was irradiated to the oxygen-saturated aqueous methyl viologen solution with PMMAcoated CdS nanorod. Photocorrosion reactions of PMMA-coated CdS nanorod were investigated and characterized by utilizing UV-Vis absorption, X-ray diffraction (XRD) and scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images.

A Photon Modeling Method for Characterization of Indoor Optical Wireless System (실내 광 무선 통신 특성 해석을 위한 포톤 모델링 방법)

  • Lee, Jung-Han;Lee, Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.688-697
    • /
    • 2008
  • In this paper, an analysis method for indoor optical wireless channel properties based on photon model is presented for characterization of communication environment. In contrast to radio waves, optical waves have very short wave-lengths and very high frequencies, so that material properties become important. Channel models including diffuse reflections and absorption effects due to material surface textures make conventional electromagnetic wave analysis methods based on ray tracing consume enormous time. To overcome these problems, an analysis method using photon model is presented that approximates light intensity by a density of photons. The photon model ensures that simulation time is within a predictable limit.