DOI QR코드

DOI QR Code

Organic Nanotube Induced by Photocorrosion of CdS Nanorod

  • Choi, Sung-Won (Department of Chemistry and Photon Applied Functional Research Laboratory, Yonsei University) ;
  • Yoon, Joong-Ho (Department of Chemistry and Photon Applied Functional Research Laboratory, Yonsei University) ;
  • An, Myoung-Jin (Department of Chemistry and Photon Applied Functional Research Laboratory, Yonsei University) ;
  • Chae, Won-Sik (Department of Chemistry and Photon Applied Functional Research Laboratory, Yonsei University) ;
  • Cho, Hyeon-Mo (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Choi, Moon-Gun (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Kim, Yong-Rok (Department of Chemistry and Photon Applied Functional Research Laboratory, Yonsei University)
  • Published : 2004.07.20

Abstract

PMMA-coated CdS nanorod was prepared by encapsulation of CdS nanorod through the polymerization process of PMMA on the surface of CdS nanorod. PMMA organic nanotube was then obtained from the elimination of the CdS nanorod by the photocorrosion. For the photocorrosion reaction of the CdS nanorod, monochromatic light was irradiated to the oxygen-saturated aqueous methyl viologen solution with PMMAcoated CdS nanorod. Photocorrosion reactions of PMMA-coated CdS nanorod were investigated and characterized by utilizing UV-Vis absorption, X-ray diffraction (XRD) and scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images.

Keywords

References

  1. Mitchell, D. T.; Lee, S. B.; Trofin, L.; Li, N.; Nevanen, T. K.; Soderlund, H.; Martin, C. R. J. Am. Chem. Soc. 2002, 124, 11864. https://doi.org/10.1021/ja027247b
  2. Wirtz, M.; Parker, M.; Kobayashi, Y.; Martin, C. R. Chem. Eur. J. 2002, 8, 3573.
  3. Chang, H. J.; Chen, Y. F.; Lin, H. P.; Mou, C. Y. Appl. Phys. Lett. 2001, 78, 3791. https://doi.org/10.1063/1.1370991
  4. Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346. https://doi.org/10.1038/30694
  5. Jirange, K. B.; Hulteen, J. C.; Martin, C. R. Science 1997, 278, 655. https://doi.org/10.1126/science.278.5338.655
  6. Ai, S.; Lu, G.; He, Q.; Li, J. J. Am. Chem. Soc. 2003, 125, 11140. https://doi.org/10.1021/ja0356378
  7. Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schiling, J.; Choi, J.; Gosele, U. Science 2002, 296, 1997. https://doi.org/10.1126/science.1071210
  8. Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem. Int. Ed. 2001, 40, 988. https://doi.org/10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N
  9. Jung, J. H.; Lee, S. S.; Shinkai, S.; Iwaura, R.; Shimizu, T. Bull Korean Chem. Soc. 2004, 25, 63. https://doi.org/10.5012/bkcs.2004.25.1.063
  10. Liang, Z.; Susha, A. S.; Yu, A.; Caruso, F. Adv. Mat. 2003, 15, 1849. https://doi.org/10.1002/adma.200305580
  11. Zygmunt, J.; Krumeich, F.; Nesper, R. Adv. Mat. 2003, 15, 1538. https://doi.org/10.1002/adma.200305134
  12. Torimoto, T.; Reyes, J. P.; Iwasaki, K.; Pal, B.; Shibayama, T.; Sugawara, K.; Takahashi, H.; Ohtani, B. J. Am. Chem. Soc. Comm. 2003, 125, 316. https://doi.org/10.1021/ja0278133
  13. Torimoto, T.; Reyes, J. P.; Murakami, S.-Y.; Pal, B.; Ohtani, B. J. Photochem. Photobio. A 2003, 160, 69. https://doi.org/10.1016/S1010-6030(03)00223-5
  14. Torimoto, T.; Kontani, H.; Shibutani, Y.; Kuwabata, S.; Sakata, T.; Mori, H.; Yoneyama, H. J. Phys. Chem. B 2001, 105, 6838. https://doi.org/10.1021/jp0109271
  15. Dijken, A. V.; Janssen, A. H.; Smitsmans, M. H. P.; Vanmaekelbergh, D.; Meijerink, A. Chem. Mater. 1998, 10, 3513. https://doi.org/10.1021/cm980715p
  16. Matsumoto, H.; Sakata, T.; Mori, H.; Yoneyama, H. J. Phys. Chem. 1996, 100, 13781. https://doi.org/10.1021/jp960834x
  17. Spanhel, L.; Haase, K.; Weller, H.; Hengiein, A. J. Am. Chem. Soc. 1987, 109, 5649. https://doi.org/10.1021/ja00253a015
  18. Li, B.; Hu, Y.; Liu, J.; Chen, Z.; Fan, W. Colloid Polym. Sci. 2003, 281, 998. https://doi.org/10.1007/s00396-003-0874-5
  19. Ge, X.; Ni, Y.; Zhang, Z. Rad. Phys. Chem. 2002, 64, 223. https://doi.org/10.1016/S0969-806X(01)00494-7
  20. Yang, J.; Zeng, J.-H.; Yu, S.-H.; Yang, L.; Zhou, G.-E.; Qian, Y.-T. Chem. Mater. 2002, 12, 3259. https://doi.org/10.1021/cm0000144
  21. Tretinnikov, O. N.; Ohta, K. Macromolecules 2002, 35, 7343. https://doi.org/10.1021/ma020411v

Cited by

  1. Morphological and mechanical characterization of a PMMA/CdS nanocomposite vol.5, pp.2, 2011, https://doi.org/10.1007/s11705-010-1014-7
  2. Evaluation of Morphological Effect on Thermal and Mechanical Performance of PS/PMMA/CdS Nanocomposite Systems vol.02, pp.03, 2013, https://doi.org/10.4236/anp.2013.23029
  3. Formation of CdS Nanoparticles within Cubic Mesoporous Silica Thin Films vol.26, pp.7, 2004, https://doi.org/10.5012/bkcs.2005.26.7.1025
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Performance improvement of organic resistive memories by exploiting synergistic layered nanohybrid dispersed polymer composites vol.127, pp.6, 2004, https://doi.org/10.1063/1.5131862