• Title/Summary/Keyword: photomorphogenic response

Search Result 6, Processing Time 0.019 seconds

PHOTOMORPHOGENIC MUTANTS OF TOMATO

  • Kendrick, Richard E.
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1994.09a
    • /
    • pp.41-51
    • /
    • 1994
  • Tomato (Lycopersicon esculentum Mill.) has been chosen as a model species for the study of hotomorphogenesis. The aurea (au) and yellow-green-2 (yg-2) mutants which are severely photochrome deficient appear to be phytochrome chromophore mutants. Mutants modified with respect to specific members of the phytochrome gene family: the far-red light-insensitive mutant (fri, for phytochrome A) and the temporarily red light-insensitive mutant (tri, for phytochrome B1) have been identified. Mutants that exhibit an exaggerated phytochrome response are putative transduction-chain mutants affecting an amplification step in phytochrome signal transduction. These mutants are being used to understand the complexities of juvenile anthocyanin in the hypocotyl during seedling de-etiolation.

  • PDF

Characterization of CaCOP1 Gene in Capsicum annuum Treated with Pathogen Infection and Various Abiotic Stresses

  • Guo, Jia;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.227-233
    • /
    • 2007
  • We characterized a full-length cDNA of CaCOP1 from pepper. Phylogenetic analysis based on the deduced amino acid sequence of CaCOP1 cDNA revealed high sequence similarity to the COP1 gene in Oryza sativa (84% identity). CaCOP1 shares high sequence identity with regulatory protein in Arabidopsis (84%), constitutively photomorphogenic 1 protein in Pisum sativum (81%) and COP1 homolog in Lycopersicon esculentum (79%). CaCOP1 gene exists single copy in the chili pepper genome. Expression of CaCOP1 was reduced in response to inoculation of non-host pathogens. The expression of this gene under abiotic and oxidative stresses was investigated, including 200 mM NaCl, 200 mM mannitol, cold ($4^{\circ}C$), 100 ${\mu}M$ abscisic acid (ABA), and 10 mM hydrogen peroxide ($H_2O_2$). CaCOP1 was induced significantly 3 h after low temperature treatment but not by dehydration or high salinity. Moreover, CaCOP1 was not induced by plant hormone ABA. These observations suggest that CaCOP1 gene plays a role in abiotic stress and may be belong to ABA-independent regulation system.

Photoperiod sensing system for timing of flowering in plants

  • Lee, Byoung-Doo;Cha, Joon-Yung;Kim, Mi Ri;Paek, Nam-Chon;Kim, Woe-Yeon
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.163-164
    • /
    • 2018
  • CONSTANS (CO) induces the expression of FLOWERING LOCUS T (FT) in the photoperiodic pathway, and thereby regulates the seasonal timing of flowering. CO expression is induced and CO protein is stabilized by FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) in the late afternoon, while CO is degraded by CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) during the night. These regulatory cascades were thought to act independently. In our study, we investigated the relationship between FKF1 and COP1 in the regulation of CO stability in response to ambient light conditions. A genetic analysis revealed that FKF1 acts as a direct upstream negative regulator of COP1, in which cop1 mutation is epistatic to fkf1 mutation in the photoperiodic regulation of flowering. COP1 activity requires the formation of a hetero-tetramer with SUPPRESSOR OF PHYA-105 (SPA1), [$(COP1)_2(SPA1)_2$]. Light-activated FKF1 has an increased binding capacity for COP1, forming a FKF1-COP1 hetero-dimer, and inhibiting COP1 homo-dimerization at its coiled-coil (CC) domain. Mutations in the CC domain result in poor COP1 dimerization and misregulation of photoperiodic floral induction. We propose that FKF1 represses COP1 activity by inhibiting COP1 dimerization in the late afternoon under long-day conditions, resulting in early flowering.

The COP9 Signalosome Network in Eukaryotic Microorganisms (진핵 미생물에서의 COP9 signalosome의 역할)

  • Cheon, Yeongmi;Lee, Soojin
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • COP9 signalosome (CSN), which is originally identified as the regulator of the photomorphogenic development in plant, is highly conserved protein complex in diverse eukaryotic organisms. Most eukaryotic CSN complex is composed of 8 subunits, which is structurally and functionally similar to the lid subunit of 26S proteasome and eIF3 translation initiation complex. CSN play important functions in the regulation of cell cycle and checkpoint response by controlling Cullin-Ring E3 ubiquitin ligases (CRL) activities. CSN exhibits an isopeptidase activity which cleaves the neddylated moiety of cullin components. In fission yeast, S-phase cell cycle progression was delayed and the sensitivity to g-ray or UV was increased in CSN1 and CSN2 deletion mutants, indicating that yeast CSN is also involved in the checkpoint regulation. CSN in fungal system more closely resembles that of the higher organisms in the structure and assembly of their components. Functionally, CSN is associated with the regulation of conidiation rhythms in Neurospora crassa and the sexual development in Aspsergillus nidulans. Recent studies also revealed that CSN functions as an essential cell cycle regulator, playing key roles in the regulation of DNA replication and DNA damage response in Aspergillus. Overall, CSN of microorganisms, such as fission yeast and fungi, share functionally common aspects with higher organisms, implying that they can be useful tools to study the role of CSN in the CRL-mediated diverse cellular activities.

Effect of Zanthoxylum piperitum Extract on Human Skin Protection from UVB by Regulation of COP1 and PPAR-α (초피나무 열매 추출물의 COP1 및 PPAR-α 조절을 통한 자외선에 대한 피부 보호 효과)

  • Kim, Yun-Sun;Kim, Yumi;Lee, Sanghwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.393-401
    • /
    • 2016
  • Ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes skin damages including skin cancer and premature skin aging. Because, even the most powerful sunscreen can't always afford enough protection, it is necessary to enhance the defensive power of skin against UV. Recently, constitutive photomorphogenic protein-1 (COP1) has shown to contribute to the regulation of UVB response of keratinocytes. In this study, we represent that COP1 and its associated protein, de-etiolated 1 (DET1), might participate in photoaging process in human skin as Arabidopsis COP1 does sun-protective function in plants. After UVB irradiation, the decrease of COP1 and DET1 mRNA expression was followed by the increase of c-Jun total protein. Moreover, transfection with DNA vectors expressing COP1 and DET1 down-regulated the c-Jun total protein. We found that Zanthoxylum piperitum extract (ZE) up-regulated the expression of COP1 and DET1 on human keratinocytes, and inhibited the expression of MMP1 which is one of the genes regulated by c-Jun signal. In addition, ZE has been reported to stimulate PPAR-${\alpha}$ and strengthen the skin barrier. We found that ZE decreased the UVB-induced IL-6 and IL-8 in NHEK cells. In human study, ZE protected skin against UV-B induced erythema and erythema-induced pigmentation. These results indicate that ZE could be useful for the protection against the adverse effects of UV irradiation through various mechanisms.

Changes of Plant Growth, Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes (발광다이오드 광원에 따른 시금치 생육, 엽 형태형성 및 세포길이 변화)

  • Lee, Myungok;Park, Sangmin;Cho, Eunkyung;An, Jinhee;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • This study aimed to determine effects of light-emitting diodes on plant growth, leaf morphology and cell elongation of two cultivars ('World-star' and 'Sushiro') of Spinacia oleracea. Plants were grown in a NFT system for 25 days after transplanting (DAT) under the LEDs [White (W), Red and Blue (RB, ratio 2:1), Blue (B), Red (R) LED] under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). The 'World-star' variety was significantly higher in shoot fresh and dry weights, leaf number, and leaf area than the 'Sushiro' variety. For the 'World-star' variety, the two treatments of mixed light (RB) and red light (R) showed a 35% higher shoot dry weight than that of blue light (B) and white light (W) at 25 DAT. In the 'Sushiro' variety, mixed light (RB) treatment, which had the highest shoot fresh and dry weights, showed 40% higher than the white light (W) treatment, which had the lowest shoot fresh and dry weights. Both varieties showed leaf epinasty symptom at 21 DAT only in both mixed light (RB) and red light (R), and red light (R) treatment showed significantly higher symptom than mixed light (RB), indicating the leaf epinasty is associated with red light. Microscopic observations of the cell size in the leaf center and edge parts showed that the cell density of leaf edge under the red light (R) was lower than that in leaf center, supporting previous reports that suggest an association of the cell size difference between the leaf center and edge with the leaf epinasty occurrence. Since the blue light (B) plays a role in alleviating the epinasty symptom caused by the red light (R), it seems necessary to identify the appropriate mixing ratio of the two light sources. In addition, the World-star variety seems to be more suitable for the cultivation of plant factory using LED light sources.