Browse > Article
http://dx.doi.org/10.4489/KJM.2013.41.1.1

The COP9 Signalosome Network in Eukaryotic Microorganisms  

Cheon, Yeongmi (Department of Microbiology and Molecular Biology, Chungnam National University)
Lee, Soojin (Department of Microbiology and Molecular Biology, Chungnam National University)
Publication Information
The Korean Journal of Mycology / v.41, no.1, 2013 , pp. 1-8 More about this Journal
Abstract
COP9 signalosome (CSN), which is originally identified as the regulator of the photomorphogenic development in plant, is highly conserved protein complex in diverse eukaryotic organisms. Most eukaryotic CSN complex is composed of 8 subunits, which is structurally and functionally similar to the lid subunit of 26S proteasome and eIF3 translation initiation complex. CSN play important functions in the regulation of cell cycle and checkpoint response by controlling Cullin-Ring E3 ubiquitin ligases (CRL) activities. CSN exhibits an isopeptidase activity which cleaves the neddylated moiety of cullin components. In fission yeast, S-phase cell cycle progression was delayed and the sensitivity to g-ray or UV was increased in CSN1 and CSN2 deletion mutants, indicating that yeast CSN is also involved in the checkpoint regulation. CSN in fungal system more closely resembles that of the higher organisms in the structure and assembly of their components. Functionally, CSN is associated with the regulation of conidiation rhythms in Neurospora crassa and the sexual development in Aspsergillus nidulans. Recent studies also revealed that CSN functions as an essential cell cycle regulator, playing key roles in the regulation of DNA replication and DNA damage response in Aspergillus. Overall, CSN of microorganisms, such as fission yeast and fungi, share functionally common aspects with higher organisms, implying that they can be useful tools to study the role of CSN in the CRL-mediated diverse cellular activities.
Keywords
Cell cycle; COP9 signalosome; CSN5; Ubiquitin ligase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, Z., Wang, Y., Cai, G. and He, Q. 2012. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet. 8: e1002712.   DOI
2 Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J. and Schade, R. 2003. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 22:1302-1312.   DOI   ScienceOn
3 Vierstra, R. D. 2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8:135-142.   DOI   ScienceOn
4 von Arnim, A. G. 2003. On again-off again: COP9 signalosome turns the key on protein degradation. Curr. Opin. Plant Biol.6:520-529.   DOI   ScienceOn
5 Wang, X., Kang, D., Feng, S., Serino, G., Schwechheimer, C. and Wei, N. 2002. CSN1 N-terminal-dependent activity is requiredfor Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol. Biol. Cell 13:646-655.   DOI   ScienceOn
6 Wee, S., Hetfeld, B., Dubiel, W. and Wolf, D. A. 2002. Conservation of the COP9 signalosome in budding yeast. BMC Genetics. 3:15.   DOI
7 Wei, N. and Deng, X. W. (2003). The COP9 signalosome. Annu Rev. Cell Dev. Biol. 19:261-286.
8 Wei, N., Chamovitz, D. A. and Deng, X. W. 1994. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78:117-124.   DOI   ScienceOn
9 Wei, N., Serino, G. and Deng, X. W. 2008. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33:592-600.   DOI   ScienceOn
10 Wei, Z., Zhang, P., Zhou, Z., Cheng, Z., Wan, M. and Gong, W. 2004. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279:34983-34990.   DOI   ScienceOn
11 Welcker, M. and Clurman, B. E. 2008. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8:83-93.   DOI   ScienceOn
12 Yoshida, A., Yoneda-Kato, N., Panattoni, M., Pardi, R. and Kato, J. Y. 2010. CSN5/Jab1 controls multiple events in the mammaliancell cycle. FEBS Lett. 584:4545-4552.   DOI   ScienceOn
13 Zaidi, I. W., Rabut, G., Poveda, A., Scheel, H., Malmstrom, J., Ulrich, H., Hofmann, K., Pasero, P., Peter, M. and Luke, B. 2008. Rtt101 and Mms1 in budding yeast form a CUL4 (DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep. 9:1034-1040.   DOI   ScienceOn
14 Zheng, J., Yang, X., Harrell, J. M., Ryzhikov, S., Shim, E. H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R. and Zhang, H. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10:1519-1526.   DOI   ScienceOn
15 Zhou, C., Seibert, V., Geyer, R., Rhee, E., Lyapina, S., Cope, G., Deshaies, R. J. and Wolf, D. A. 2001. The fission yeast COP9 signalosome is involved in cullin modofication by ub-related Ned8p. BMC Biochem. 2: 7.   DOI
16 Zhou, C., Arslan, F., Wee, S., Krishnan, S., Ivanov, A. R., Oliva, A., Leatherwood, J. and Wolf, D. A. 2005. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol. 3:14.   DOI   ScienceOn
17 Maytal-Kivity, V., Piran, R., Pick, E., Hofmann1, K. and Glickman, M. H. 2002. COP9 signalosome components playa role in the mating pheromone response of S. cerevisiae. EMBO Rep. 3:1215-1221.   DOI   ScienceOn
18 Liu, C., Powell, K. A., Mundt, K., Wu, L., Carr, A. M. and Caspari, T. 2003. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and-independent mechanisms. Genes Dev. 17:1130-1140.   DOI   ScienceOn
19 Liu, C., Poitelea, M., Watson, A., Yoshida, S.-h., Shimoda, C., Holmberg, C., Nielsen, O. and Carr, A. M. 2005. Transactivationof S. pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ub ligase. pdf. EMBO J. 24:3940-3951.   DOI   ScienceOn
20 Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D. A., Wei, N. and Deshaies, R. J. 2001. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382-1385.   DOI   ScienceOn
21 Maytal-Kivity, V., Piran, R., Pick, E., Hofmann, K. and Glickman, M. H. 2002. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep.3:1215-1221.   DOI   ScienceOn
22 Mundt, K. E., Porte, J., Murray, J. M., Brikos, C., Christensen, P. U., Caspari, T., Hagan, I. M., Millar, J. B. A., Simanis, V. and Hofmann, K. 1999. The COPp sig complex is conserved in fission yeast and has a role in S phase. Curr. Biol. 9:1427-1430.   DOI   ScienceOn
23 Purschwitz, J., ller, S. M., Kastner, C., Schöser, M., Haas, H., Espeso, E. A., Atoui, A., Calvo, A. M. and Fischer, R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18:255-259.   DOI   ScienceOn
24 Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S. and Fischer, R. 2010. Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev. Microbiol. 64:585-610.   DOI   ScienceOn
25 Seeger, M., Kraft, R., Ferrell, K., Bech-Otschir, D., Dumdey, R., Schade, R., Gordon, C., Naumann, M. and Dubiel, W. 1998. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J.12:469-478.   DOI
26 Tian, L., Peng, G., Parant, J. M., Leventaki, V., Drakos, E., Zhang, Q., Parker-Thornburg, J., Shackleford, T. J., Dai, H. and Lin, S. Y. 2010. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 29:6125-6137.   DOI   ScienceOn
27 Shackleford, T. J. and Claret, F. X. 2010. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5:26.   DOI   ScienceOn
28 Sullivan, J. A., Shirasu, K. and Deng, X. W. 2003. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat. Rev. Genet. 4948-958.
29 Tanguy, G., Drevillon, L., Arous, N., Hasnain, A., Hinzpeter, A., Fritsch, J., Goossens, M. and Fanen, P. 2008. CSN5 binds to misfolded CFTR and promotes its degradation. Biochim. Biophys. Acta 1783:1189-1199.   DOI   ScienceOn
30 Tomoda, K., Kubota, Y., Arata, Y., Mori, S., Maeda, M., Tanaka, T., Yoshida, M., Yoneda-Kato, N. and Kato, J. Y. 2002. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex.J. Biol. Chem. 277:2302-2310.   DOI   ScienceOn
31 Fagundes, M. R., Lima, J. F., Savoldi, M., Malavazi, I., Larson, R. E., Goldman, M. H. and Goldman, G. H. 2004. The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase. Genetics 167: 1629-1641.   DOI   ScienceOn
32 Fu, H., Reis, N., Lee, Y., Glickman, M. H. and Vierstra, R. D. 2001. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20: 7096-7107.   DOI   ScienceOn
33 Fukumoto, A., Tomoda, K., Kubota, M., Kato, J. Y. and Yoneda-Kato, N. 2005. Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation. FEBS Lett. 579:1047-1054.   DOI   ScienceOn
34 Fukumoto, A., Tomoda, K., Yoneda-Kato, N., Nakajima, Y. and Kato, J. Y. 2006. Depletion of Jab1 inhibits proliferation of pancreatic cancer cell lines. FEBS Lett. 580:5836-5844.   DOI   ScienceOn
35 He, Q., Cheng, P. and Liu, Y. 2005. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19:1518-1531.   DOI   ScienceOn
36 Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K. and Nakatani, Y. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357-367.   DOI   ScienceOn
37 Gusmaroli, G., Figueroa, P., Serino, G. and Deng, X. W. 2007. Role of the MPN subunits in COP9 signalosome assembly and activity and their regulatory interaction with Arabidopsis Cullin3-based E3 ligases. Plant Cell 19:564-581.   DOI   ScienceOn
38 Hannss, R. and Dubiel, W. 2011. COP9 signalosome function in the DDR. FEBS Lett. 585: 2845-2852.   DOI   ScienceOn
39 Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. and Zhang, H. 2003. Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. NatCell Biol. 5:1008-1015.
40 Huang, J., Yuan, H., Lu, C., Liu, X., Cao, X. and Wan, M. 2007. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J. Mol. Biol. 371:514-527.   DOI   ScienceOn
41 Jackson, S. and Xiong, Y. 2009. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci. 34:562-570.   DOI   ScienceOn
42 Jia, S., Kobayashi, R. and Grewal, S. I. 2005. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferaseto assemble heterochromatin. Nat. Cell Biol. 7:1007-1013.   DOI   ScienceOn
43 Kato, J. Y. and Yoneda-Kato, N. 2009. Mammalian COP9 signalosome. Genes Cells 14:1209-1225.   DOI   ScienceOn
44 Kim, T., Hofmann, K., von Arnim, A. G. and Chamovitz, D. A. 2001. PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci. 6:379-386.   DOI   ScienceOn
45 Braus, G. H., Irniger, S. and Bayram, O. 2010. Fungal development and the COP9 signalosome. Curr. Opin. Microbiol. 13:672-676.   DOI   ScienceOn
46 Lima, J. F., Malavazi, I., von Zeska Kress Fagundes, M. R., Savoldi, M., Goldman, M. H., Schwier, E., Braus, G. H. and Goldman, G. H. 2005. The csnD/csnE signalosome genes are involved in the Aspergillus nidulans DNA damage response. Genetics 171:1003-1015.   DOI   ScienceOn
47 Bartek, J. and Lukas, J. 2007. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19: 238-245.   DOI   ScienceOn
48 Bech-Otschir, D., Seeger, M. and Dubiel, W. 2002. The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. J. Cell Sci. 115:467-473.
49 Busch, S., Eckert, S. E., Krappmann, S. and Braus, G. H. 2004. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 49:717-730.   DOI   ScienceOn
50 Busch, S., Schwier, E. U., Nahlik, K., Bayram, O., Helmstaedt, K., Draht, O. W., Krappmann, S., Valerius, O., Lipscomb, W. N. and Braus, G. H. 2007. An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc. Natl. Acad. Sci. USA 104:8089-8094.   DOI   ScienceOn
51 Cope, G. A., Suh, G. S., Aravind, L., Schwarz, S. E., Zipursky, S. L., Koonin, E. V. and Deshaies, R. J. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608-611.   DOI   ScienceOn
52 Dohmann, E. M., Levesque, M. P., De Veylder, L., Reichardt, I., Jurgens, G., Schmid, M. and Schwechheimer, C. 2008. The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability. Development 135:2013-2022.   DOI   ScienceOn