• Title/Summary/Keyword: photoinhibition

Search Result 68, Processing Time 0.027 seconds

Antioxidant Protection of Alnus firma Sieb. et Zucc Leaves against Photoinhibition in Tailings (폐석지내(廢石地內) 광(光) 저해(沮害)에 대한 사방오리나무 잎의 항산화(抗酸化) 보호(保護))

  • Han, Sim-Hee;Lee, Jae-Cheon;Lee, Wi Young;Park, Youngki;Oh, Chang-Young;Kim, Jong-Kab
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.124-130
    • /
    • 2006
  • To explore the development of photoprotective mechanisms, chlorophyll a fluorescence, chlorophyll and carotenoid content and antioxidant enzyme activity in leaves were investigated at different vitality and leaf development stage of Alnus firma Sieb. et Zucc under tailing condition. The lowest maximum photochemical efficiency (Fv/Fm) in leaves of high- and low-vitality plants were observed at 12:00 pm and 2:00 pm, respectively, and the decrease of Fv/Fm in leaves of all plants were almost completely restored at 6:00 pm. Fv/Fm of full-expansion leaves was higher than that of emergence leaves at all measurement time. Chlorophyll, ${\beta}$-carotene and xanthophyll content in leaves of high-vitality plants and in full-expansion leaves were higher when compared to those of low-vitality plants and emergence leaves. Especially xanthophyll contents in both stage leaves of high-vitality plants were higher than 8.7 times and 18.8 times those of low-vitality plants. Only SOD activity was seen significant difference between leaf stage in leaves of high-vitality plants.

Diurnal and Seasonal Variation of Chlorophyll Fluorescence from Korean Fir Plants on Mt. Halla (한라산 구상나무 잎의 엽록소형광의 일변화와 계절적 변화)

  • 오순자;고정군;김응식;오문유;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2001
  • Chlorophyll fluorescence of needles of Korean fir (Abies koreana) plants and environmental factors of their natural habitat were investigated in order to obtain the information for environmental adaptation and conservation of Korean fir plants. The photochemical efficiency of photosystem II, Fv/Fm, of Korean fir needles was significantly low (0.19-0.36) in the winter, whereas it was high (0.8-0.86) in the summer. The Fv/Fm value of the winter was slightly higher at mid-day than at dawn, suggesting that mid-day environmental conditions of the winter were favorable on needles of Korean fir plants. In contrast, the mid-day Fv/Fm value of the summer maintained high (around 0.8). It indicates that mid-day environmental conditions of the summer did not induce photodamage, although it caused a slight decrease in the Fv/Fm values. The non-photochemical fluorescence quenching (NPQ) of Korean fir needles was very low (0-0.01) all through the day in the winter. However, it was high (0.76) at mid-day in the summer. These results suggest that Korean fir plants have a system for the protection of PS II from mid-day environmental stresses of the summer. In the winter, the Fv/Fm values were positively correlated with temperature, light intensity and relative humidity, although NPQ values showed no correlation with any of them. In the summer, the Fv/Fm values were positively correlated with relative humidity but negatively correlated with temperature and light intensity. These results indicate that increase of tempera-ture, light intensity and relative humidity lead to promotion of the photochemical efficiency in the winter and high temperature and light intensity may cause photoinhibition in the summer.

  • PDF

Genetic Analyses of Heading and Maturing Dates and Their Relationship to Freezing Resistance in Barley (보리 출수기와 성숙기의 유전분석 및 내동성과의 관계)

  • 천종은;강석원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.395-401
    • /
    • 2002
  • The combination of early heading time, maturing time and short grain-filling period is very important to develop early varieties in winter barley. The 4 parental half diallel crosses (parents, $F_1$s, $F_2$s) were cultivated at the field. The heading date was from April 3 to 26, maturing date from May 15 to 27 and grain-filling period from 31 days to 42 days, showing that the varietal differences about the 3 traits were remarkable. According to half diallel cross analyses, Dongbori 1 for heading time (late heading) was dominant, but Oweolbori (early heading) was recessive, showing partial dominance with high additive component of genetic variance. Dongbori 1 for maturing time was dominant, but Oweolbori was recessive, showing partial dominance with high additive variance. Reno for grain-filling period (short grain-filling period) was dominant, but Oweolbori (long grain-filling period) was recessive with additive, and partial dominance. There were highly significant mean squares for both GCA and SCA effects on the heading and maturing times, and GCA/SCA ratios for all traits were high, showing the additive gene effects more important. Sacheon 6 and Oweolbori had greater GCA effects for early heading and maturing times, and Dongbori 1 and Reno had greater GCA effects for late times. GCA effects were highly significant in $F_1$ and $F_2$ generations, showing high GCA/SCA ratios (7.02). The heading and maturing times in field were positively correlated with antifreeze proteins concentrations, accumulation, resistance to photoinhibition and winter survival, respectively) but the grain-filling period did negatively correlated with the trails.

Bioremediation on the Benthic Layer in Polluted Inner Bay by Promotion of Microphytobenthos Growth Using Light Emitting Diode (LED) 1. Effects of irradiance and wavelength on the growth of benthic diatom, Nitzschia sp. (발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선 1. 저서규조류 Nitzschia sp. 성장에 영향을 미치는 광량과 파장)

  • Oh, Seok-Jin;Park, Dal-Soo;Yang, Han-Soeb;Yoon, Yang-Ho;Honjo, Tsuneo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • In order for bioremediate the benthic layer in polluted inner Bay, the effects of irradiance and wave-length irradiated from light emission diode (LED) on the growth of benthic diatom Nitzschia sp. (Hakozaki Bay strain of Japan) were investigated. The Nitzschia sp. was cultured under blue LED (450 nm), yellow LED (590 nm), red LED (650 nm) and fluorescent lamp (mixed wavelengths). At $25^{\circ}C$ and 30 psu, the growth of Nitzschia sp. showed its peak at $20\;{\mu}mol\;m^{-2}\;s^{-1}$ (blue LED) and $40\;{\mu}mol\;m^{-2}\;s^{-1}$ (fluorescent lamp), and was inhibited at the irradiance higher than that irradiance. Nitzschia sp. in yellow LED and red LED is fitted by a rectangular hyperbolic curve because no photoinhibition was observed under maximum irradiance used in this study. The irradiance-growth curves were described as ${\mu}=-0.46{\exp}(1-I/6.32)+0.46-0.00043I,\;(r^2=0.98)$ under blue LED, ${\mu}=0.42(I+7.87)/(I+58.9),\;(r^2=0.99)$ under yellow LED, ${\mu}=0.39(I+3.39)/(I+21.6),\;(r^2=0.94)$ under red LED, ${\mu}=-0.38{\exp}(1-I/7.23)+0.38-0.00016I,\;(r^2=0.96)$ under fluorescent lamp. Maximum specific growth rate of blue LED, yellow LED, red LED and fluorescent lamp was $0.44\;day^{-1},\;0.42\;day^{-1},\;0.39\;day^{-1}$ and $0.37\;day^{-1}$, respectively. The absorption coefficient ($a_{ph}$) of Nitzschia sp. was similar under all the wavelengths (400 nm-700 nm), although maximum $a_{ph}$ was $0.0224\;m^2\;mg\;chi.\;{\alpha}^{-1}$ in 472 nm and $0.0179\;m^2\;mg\;chi.\;{\alpha}^{-1}$) in 663 nm. The results may indicate the possibility of environmental improvement around the benthic layer in polluted coastal area because microphytobenthos growth is stimulated by means of irradiated blue LED at the benthic boundary layer during both autumn and winter, and yellow LED, which might have been suppressed growth of harmful algae, at the layer during both spring and summer.

  • PDF

Cold Tolerance of Native and Introduced Evergreen Rhododendron Species According to Morphological and Physiological Changes (국내 자생종 및 도입종 만병초의 내한성과 관련된 형태 및 생리적변화)

  • Lee, Byung-Chul;Kim, Seong-Min;Cheng, Hyo-Cheng;Shim, Ie-Sung
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.561-567
    • /
    • 2011
  • Cold tolerance of the native Rhododendron species which are on the verge of extinction in Korean nature were compared with the introduced species and its mechanism were studied physiologically with the investigation of the leaf angle, leaf curling, and photosynthetic activity. The degree of cold tolerance measured with the leaf burning after winter season was higher in the native species, Rhododendron brachycarpum and Rhododendron brachycarpum var. roseum than all the introduced species. 'Nova Zembla', an introduced species, showed high sensitivity to the low temperature. Changes in leaf angle by the low temperature were bigger in 2 native species and 'Parker's Pink' than the other introduced species and small comparatively in 'Nova Zembla' and 'Cunningham's White' cultivar. Leaf curling also occurred strongly in 2 native species by the low temperature. While, it was comparatively little and mild in the other introduced species. Therefore these results suggested that the leaf movement such as leaf angle change and curling adapted to the low temperature is positively related to the cold tolerance of 2 native species. By the way, such relationship is not explainable in the cold-sensitive 'Parker's Pink' cultivar showing comparatively stronger leaf movement. Photosynthetic activity measured before the winter season was high in the cold-tolerant R. brachycarpum and its recovery after winter season was faster in the 2 native species and the introduced 'Cynosure' cultivar than the other introduced species. They were the lowest in the most cold-sensitive 'Nova Zembla'. This phenomena occurred similarly even in the stomatal conductivity, suggesting that the movement of water from the roots to the leaves is better and then the leaf burning after winter season become small in the cold-tolerant species. The recovery of photosynthetic activity and stomatal conductivity was comparatively slower in the cold-sensitive 'Parker's Pink'. From the above results, leaf behavior adapted to the low temperature during the winter season and water movement to the leaves are related collectively to the cold tolerance represented as the leaf burning in the Rhododendron species is suggested.

The Microalgal Attachment and its Growth on the Artificial Surfaces Immersed in Seawater: II. Chlorophyll a and Primary Productivity (해수에 잠긴 인공기질 표면에서 미세조류의 부착과 성장: II. 엽록소와 일차생산력)

  • Shim, Jae-Hyung;Kang, Jung-Hoon;Cho, Byung-Cheol;Kim, Woong-Seo;Pae, Se-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.136-143
    • /
    • 1999
  • To understand the growth of attached microalgae to the immersed artificial surfaces in seawater with exposure time, chlorophyll a (chl a) concentration and abundance of attached microalgae to glass slides, and primary productivity and chl a concentration on coverglasses were investigated in Incheon Harbour in May, June 1996 and January-February 1997. Chl a concentrations of microalgae and abundances of diatoms attached to glass slides reached 62.5 mg chl a $m^{-2}$ and $144{\times}10^3$ cells $cm^{-2}$, respectively, during the study period. Chl a concentrations increased with exposure time, and they were significantly correlated with the abundances of attached diatoms ($r^2=0.79$, p<0.001). The chl a concentrations of attached micro algae on coverglass reached the maximum values of 31.1 mg chl a $m^{-2}$ and 65.4 mg chl a $m^{-2}$, and then decreased in May, June 1996. But in January-February 1997, the chl a concentration increased continuously up to 98.9 mg chl a $m^{-2}$. The primary productivity reached the maximum values of 63.1 mgC $m^{-2}\;h^{-1}$, 347.0 mgC $m^{-2}\;h^{-1}$ and 78.3 mgC $m^{-2}\;h^{-1}$, respectively, in May, June and January-February. The primary productivity in May and June varied in accordance with chl a concentrations. But in January-February, the primary productivity decreased from 26 days of exposure while chl a concentration continued to increase. Two cases that primary productivity decreased abruptly seemed to be caused by decrement of chl a and light specific $P^B$ (chl a specific primary productivity) (May and June) and by decrement of light specific $P^B$ due to photoinhibition (January-February). The results of present study indicated that chl a concentrations and the primary productivity of microalgae attached to artifical surfaces immersed in seawater would expedite analysis of dynamics of biomass and physiological status of attached microalgae during biofilm formations.

  • PDF

Growth Characteristics on the Water Temperature, Salinity and Irradiance of the harmful Algae Chattonella ovata Y. Hara et Chihara(Raphidophyceae) Isolated from South Sea, Korea (한국 남해에서 분리한 유해 침편모조류 Chattonella ovata Y. Hara et Chihara의 수온, 염분 및 광량에 대한 성장특성)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Kim, Dae-Il;Oh, Seok-Jin;Kim, Jong-Deok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.140-147
    • /
    • 2010
  • We investigated the effects of water temperature, salinity and irradiance on the growth of the harmful algae Chattonella ovata isolated from South Sea, Korea. C. ovata grew under all combinations of water temperatures and salinity, except for all the salinity conditions at the water temperature of $10^{\circ}C$, with the salinity of 7.5 psu and 10 psu at $15^{\circ}C$, and 7.5 psu at $20^{\circ}C$ and $30^{\circ}C$. The maximum specific growth rate was $0.62\;day^{-1}$ at the combination of $30^{\circ}C$ and 30 psu. The results of two-way ANOVA indicated that growth rate depended greatly on the water temperatures while not being affected by interactions with the salinity. This indicates that C. ovata is a stenothermal and euryhaline organism, preferring high water temperatures. C. ovata did not grow at irradiance ${\leq}30\;{\mu}mol$ photons $m^{-2}s^{-1}$. Photoinhibition did not occur at $800\;{\mu}mol$ photons $m^{-2}s^{-1}$, which was the maximum irradiance used in this study. The irradiance-growth curve was described as $\mu$ = 0.74(I-16.0)/(I+43.9) at $30^{\circ}C$ and 30 psu. The half-saturation light intensity ($K_s$) was $75.9\;{\mu}mol$ photons $m^{-2}s^{-1}$ and compensation photon flux density ($I_c$) was $16.0\;{\mu}mol$ photons $m^{-2}s^{-1}$, especially this value was comparatively lower than those of Skeletonema costatum and other flagellates previously reported. Therefore, our results indicate that C. ovata has advantageous physiological characteristics for interspecific competition at the embayment and coastal areas of Korea in summer.

Effects of Optical Characteristics on the Growth of Benthic Microalga, Nitzschia sp. and Its Growth Kinetics of Phosphate for Bioremediation (생물적 환경정화를 위한 부착미세조류 Nitzschia sp.의 생장에 미치는 광학적 특성과 그에 따른 인산염 성장 동력학)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb;Park, Jong-Sick
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • To suggest possible to bioremediation by benthic microalgae Nitzschia sp. isolated from the Jinhae Bay, the studies investigated the effects o flight quality and quantity on the growth of Nitzschia sp. and its growth kinetics for phosphate investigated. The Nitzschia sp. was cultured under blue (450 nm), yellow (590 nm) and red wavelength (650 nm) using light emitting diode (LED) and mixed wavelengths using a fluorescent lamp. The maximum specific growth rate showed the Nitzschia sp. under blue wavelength, although photoinhibition was observed above $100\;{\mu}mol\;m^{-2}\;s^{-1}$. Mixed wavelengths were also observed by decreasing the maximum cell density from high irradiances (>$100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$). The compensation photon flux density ($I_0$) calculated from the mixed wavelengths equated to a depth of 4-10 m in Jinhae Bay, and was lower in the summer season than the depth due to suspended matter (ca. 4 m). Thus, the suitable depth for maximum growth of Nitzschia sp. might be extremely limited. In the growth kinetics for phosphate, half-saturation constant ($K_s$) was similar among different wavelengths, although the maximum growth rate was varied among different wavelengths. Because the $K_s$ was high than that of the phytoplankton, Nitzschia sp. might have adapted to the high nutrient concentrations, and have effective nutrient storage in the cell quota. Thus, Nitzschia sp. may be a useful species for bioremediation of the benthic layer in polluted inner bays by means of irradiated specific wavelength as blue.