• Title/Summary/Keyword: photoelectric

Search Result 299, Processing Time 0.03 seconds

Transparent Conductors for Photoelectric Devices

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Yun, Ju-Hyung;Kim, Hyunki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.87.2-87.2
    • /
    • 2015
  • Transparent conductors are commonly used in photoelectric devices, where the electric energy converts to light energy or vice versa. Energy consumption devices, such as LEDs, Displays, Lighting devices use the electrical energy to generate light by carrier recombination. Meanwhile, solar cell is the only device to generate electric energy from the incident photon. Most photoelectric devices require a transparent electrode to pass the light in or out from a device. Beyond the passive role, transparent conductors can be employed to form Schottky junction or heterojunction to establish a rectifying current flow. Transparent conductor-embedded heterojunction device provides significant advantages of transparent electrode formation, no need for intentional doping process, and enhanced light-reactive surface area. Herein, we present versatile applications of transparent conductors, such as NiO, ZnO, ITO in photoelectric devices of solar cells and photodetectors for high-performing UV or IR detection. Moreover, we also introduce the growth of transparent ITO nanowires by sputtering methods for large scale application.

  • PDF

NiO-transparent Metal-oxide Semiconductor Photoelectric Devices (NiO 기반의 투명 금속 산화물 반도체 광전소자)

  • Ban, Dong-Kyun;Park, Wang-Hee;Eun, Seong Wan;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.359-364
    • /
    • 2016
  • NiO serves as a window layer for Si photoelectric devices. Due to the wide energy bandgap of NiO, high optical transparency (over 80%) was achieved and applied for Si photoelectric devices. Due to the high the high mobility, the heterojunction device (Al/n-Si/$SiO_2$/p-NiO/ITO) provide ultimately fast photoresponses of rising time of $38.33{\mu}s$ and falling time of $39.25{\mu}s$, respectively. This functional NiO layer would provide benefits for high-performing photoelectric devices, including photodetectors and solar cells.

Functional Designs of Metal oxide for Transparent Electronics

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Kim, Hyunki;Yadav, Pankaj;Park, Wanghee;Ban, Dongkyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.1-387.1
    • /
    • 2016
  • Transparent materials are necessary for most photoelectric devices, which allow the light generation from electric energy or vice versa. Metal oxides are usual materials for transparent conductors to have high optical transmittance with good electrical properties. Functional designs may apply in various applications, including solar cells, photodetectors, and transparent heaters. Nanoscale structures are effective to drive the incident light into light-absorbing semiconductor layer to improve solar cell performances. Recently, the new metal oxide materials have inaugurated functional device applications. Nickel oxide (NiO) is the strong p-type metal oxide and has been applied for all transparent metal oxide photodetector by combining with n-type ZnO. The abrupt p-NiO/n-ZnO heterojunction device has a high transmittance of 90% for visible light but absorbs almost entire UV wavelength light to show the record fastest photoresponse time of 24 ms. For other applications, NiO has been applied for solar cells and transparent heaters to induce the enhanced performances due to its optical and electrical benefits. We discuss the high possibility of metal oxides for current and future transparent electronic applications.

  • PDF

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Feasibility of the Defrost Control by Photoelectric Technology via Comparison with the Temperature Differential Defrosting Method (온도차 감지 제상법과의 비교를 통한 광센서 제상법의 타당성 검증을 위한 연구)

  • Jeon, Chang-Duk;Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.9
    • /
    • pp.434-440
    • /
    • 2014
  • Experiments were performed to verify if performance and characteristic curves obtained from the temperature differential defrosting method, where surface temperature is measured to judge defrosting condition, can be reproduced by the photoelectric technology where defrosting condition is judged by photoelectric sensors. The output voltage of a phototransistor and heating capacity, power consumption, and surface temperature of the outdoor heat exchanger are compared. The results showed that the photoelectric sensors can be used as a defrost control device. On-off control timings in temperature differential defrosting method are in good agreement with those predicted by the high and low threshold output voltages of the photoelectric sensor.

On the Photoelectric Effects of the Various Kinds of Light Source influencing to the Starting Characteristics of the Cold Cathode Type Discharge Tube (냉음극방전관의 기동특성에 미치는 각종광원에 의한 광전효과)

  • Chee, Chol Kon;Won, Chong Soo
    • 전기의세계
    • /
    • v.13 no.4
    • /
    • pp.10-15
    • /
    • 1964
  • It is well known that the starting characteristics of the cold cathode type discharge tube have photoelectric effects by the incident light from outside. After making the cold cathode type discharge tubes to be avaiable for popularizing, the present paper was devoted primaliry to a study of relations between the starting characterstics and photoelectric effects of discharge tube under the oight circumstances of day light, incandescent lamp, flouresent lamp, and mercury lamp we used frequently. The result of this investigation show that the photoelectric effects by flourescent lamp emitting short wave length having close ralation to the photoelectric effects is greater than incandescent lamp or day light, and also mercury lamp emitting shorter wave length than flourescent lamp indicates the greatest photoelectric effects.

  • PDF

ITO Nanowires-embedded Transparent Metal-oxide Semiconductor Photoelectric Devices (ITO 나노와이어 기반의 투명 산화물 반도체 광전소자)

  • Kim, Hyunki;Kim, Hong-Sik;Patel, Malkeshkumar;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.808-812
    • /
    • 2015
  • Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction of p-type NiO and n-type ZnO. A functional template of ITO nanowires (NWs) was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

Transparent Conductor-embedding Si for High-performing Hetrojunction Photoelectric Devices

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.444.2-444.2
    • /
    • 2014
  • Transparent conductors (TCs) are typically applied as an ohmic contact layer for photoelectric devices. Recent researches have illuminated a unique rectifying-junction design between a transparent conductor and a semiconductor layer. This approach may lead a significant reduction of device-fabrication steps and cost. A high-performing heterojunction device is presented, which provided significant photoelectric responses. This covers the fabrication processes, rectifying-junction formations and device analyses.

  • PDF

Calculation of Photoelectric Yield by X-ray (X선(線)에 의한 광전수율(光電收率) 계산(計算)에 관(關)한 연구(硏究))

  • Song, Jae-Kwan
    • Journal of radiological science and technology
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 1978
  • X-rays contribute to electron emission from material surfaces primarily through photoelectric interaction. A simple model is described for predicting the yield and energy spectrum of photon and Auger electrons emitted from materials exposed to X-ray with low energy. In this paper, We have calculated the yield of primary, Auger, and secondary, electrons. The results of the photoelectric yield model developed here suggests that. I) The angular distribution of emitted electrons(Per unit angle) is proportional to $sin{\theta}\;cos{\theta}$ for all electron energies and all components(Primary, Auger, or Secondary) II) The shape of the energy spectrum of the photoelectric yield is independent of angle. III) For this targets the forward and backward photoelectric yields are indentical.

  • PDF

A Study on the Need for Developing a Photoelectric Smoke Detector Detecting Smokes Emitted from Diverse Fire Sources (다양한 화원으로부터 발생된 연기를 감지하는 광전식연기감지기의 필요성에 대한연구)

  • Lee, Jong-Hwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2016
  • In this paper which was performed to bring public attention to the need for developing an photoelectric smoke detector that detects smokes emitted from diverse fire sources, it was confirmed that the photoelectric smoke detector may not respond to certain smoke types depending on the size and color of smoke particles. The test was performed on a photoelectric smoke detector which is being used generally for specific fire targets specified in UL268, including paper fire, wood fire and flammable liquid fire, while the actual response performance of the fire detector, as well as respective smoke particles collected from different fire source which were photographed with a SEM(Scanning electron microscope) were analyzed in the test for this study.