• 제목/요약/키워드: photoelastic study

검색결과 119건 처리시간 0.033초

어태치먼트를 이용한 IMZ 임플랜트와 자연치의 연결시 고정유무의 연결형태에 따른 광탄성 응력분석에 관한 연구 (A STUDY OF PHOTOELASTIC STRESS ANALYSIS IN THE IMZ IMPLANT-NATURAL 700TH SUPPORTED FIXED PARTIAL DENTURE USING ATTACHMENT WITH OR WITHOUT RIGID CONNECTION)

  • 김정선;황영필;계기성
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.130-143
    • /
    • 1995
  • The purpose of this study was to analyze the magnitude and distribution of stress using photoelastic model with the rigid connection using T-block attachment and non-rigid connection using key & keyway attachment. The vertical load of 16 Kg was applied on the central fossa of the tooth, the pontic and the implant, and the pattern and distribution under each condition was analyzed. The following results were obtained : 1. In case of vertical load on the central fossa of the implant, the stress was concentrated at the apex of the implant involving the mesial alveolar bone in both fixed partial denture with the rigid connection and that with the nonrigid connection and the stress concentration at the mesial cervical area of the implant was a little more in the nonrigid connection than in the rigid connection. 2. In case of vertical load on the central fossa of the pontic, the stress was concentrated at the apex of 2nd bicuspid in both 3 unit fixed partial denture with nonrigid connection and that with the rigid connection. The stress was more concentrated at the mesial alveolar bone of the implant, but the stress distribution at the natural teeth more favorable at the rigid connection than at the non-rigid connection in case of 4 unit fixed partial denture. 3. In case of vertical load of the central fossa of the 2nd bicuspid, much stress with 3 fringe order was observed at the apex of the 2nd bicuspid in the 3 unit fixed partial denture, but relatively even stress distribution was observed at the apex of the implant, the 1st and 2nd bicuspid, and the adjacent cuspid in the 4 unit fixed partial denture.

  • PDF

하악 견치 잔존시 의치 설계에 따른 치아 지지조직 및 잔존치조제의 광탄성 응력분석 (A PHOTOELASTIC STRESS ANALYSIS ON TOOTH SUPPORTING STRUCTURE AND RESIDUAL RIDGE ACCORDING TO DENTURE DESIGN FOR REMAINING MANDIBULAR CANINES)

  • 김일평;고준원;진태호
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.486-503
    • /
    • 1997
  • The purpose of this study was to evaluate the stress patterns developed in abutment and residual ridge according to removable denture design in case of remaining mandibular canines. The removable denture designs in this study were as foolows : 1. Removable partial denture with non-splinted abutment 2. Removable partial denture with splinted abutment 3. Overdenture with telescopic crown 4. Overdenture with O-Ring attachment 5. Overdenture with combination bar attachment Photoelastic stress analysis was used to record the isochromatic fringe patterns and to calculate principal stress components at measuring points. The results were as follows : 1. In case of removable partial denture with non-splinted abutment, stress of root area at the loaded side was the largest. No significant differences in stress of root area were observed between loaded side and unloaded side. 2. No significant differences in stress of residual ridge at the loaded side were observed between removable partial denture with splinted abutment and removable partial denture with non-splinted abutment. 3. In case of combination bar attachment retained overdenture, stress of root area was the largest and in case of telescopic crown retained overdenture, stress of root area was the lowest. 4. In case of attachment retained overdenture, stress of residual ridge was lower but stress of root area was larger than in case of removable partial denture.

  • PDF

고정성 가공의치를 지지하는 임프란트의 길이에 따른 임플란트 주위 골조직에서의 응력분산에 관한 광탄성 연구 (A PHOTOELASTIC STUDY OF STRESS DISTRIBUTIONS AROUND SURROUNDING BONE TISSUES OF IMPLANTS DEPENDING UPON THE LENGTH OF IMPLANT FIXTURES SUPPORTING FIXED BRIDGES)

  • 배형수;조성암
    • 대한치과보철학회지
    • /
    • 제30권4호
    • /
    • pp.611-621
    • /
    • 1992
  • 저자는 두개의 브로네마트 임플란트를 지대치로 하는 가공의치를 제작할 때 임플란트의 길이에 따른 임플란트 주위 조직의 응력분산양상을 평가하기 위하여 임플란트의 길이가 각각 10mm, 7mm, 5mm인 여섯가지의 실험모형을 제작하고 가공의치 중아부에 64kg의 수직하중을 가하여 2차원적 광탄성응력분석 실험을 행하여 비교 분석 해본 바, 다음과 같은 결론을 얻었다. 1. 여섯가지 실험모형 중 응력분산 양상은 실험모형 I (10mm, 10mm)일 경우가 가장 좋았다. 2. 근심과 원심에 같은 길이의 임플란트를 매식하였을 경우, 응력은 대체로 임플란트 표면적의 감소에 비례하여 증가하였다. 3. 근심과 원심에 다른 길이의 임플란트를 매식하였을 경우, 짧은 쪽 임플란트의 경부에 응력이 집중되었다.

  • PDF

두개의 골유착성 임프란트를 이용한 하악 OVERDENTURE에서 ATTACHMENT 설계에 따른 임프란트 지지조직의 삼차원적 광탄성 응력분석 (A THREE DIMEMSIONAL PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTING BONE TISSUE ACCORDING TO DESIGN OF ATTACHMENTS USED FOR MANDIBULAR OVERDENTURE USING TWO OSSEOINTEGRATED IMPLANSTS)

  • 신규학;정장모;전영환;황희성
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.31-69
    • /
    • 1996
  • The purpose of this investigation was to analyze stress distribution in implant supporting tissue according to different types of attachments such as combination bar attachment, Hader bar attachment, O-Ring attachment and Dal-Ro attachment that are used in mandibular overdenture by using two osseointegrated implants, to study the influence that POM IMC used in bar type attachment has in implant supporting tissue and compare the preceding analyses to find out an effective stress distribution method. Three dimensional photoelastic method was used to obtain the following results. (A) Analysis of stress distribution according to attachment type 1. Under vertical load condition, compressive stress was seen at implant supporting area of working side on all the photoelastic models but in Hader bar attachment tensional stress was seen at distal upper area of implant supporting area. Relatively Hader bar and O-Ring attachment showed even stress distribution pattern. 2. Under vertical load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models. 3. Under $25^{\circ}$ lateral load condition, general compressive stress was seen at working side implant supporting area in most of the models, especially at distal upper supporting area higher compressive stress concentration was seen in combination bar attachment and tensional stress concentration, in Hader bar attachment. 4. Under $25^{\circ}$ lateral load condition, compressive stress at implant apex area and tensional stress at implant lateral supporting area were seen at nonworking side of all models, except O-Ring model which showed compressive stress only. (B) Influence of POM IMC to stress distribution in bar type attachment 5. Under vertical load condition, better stress distribution pattern was seen at working side of combination bar and Hader bar attachment model using POM IMC. 6. Under vertical load condition, stress value was increased at nonworking side of combination bar attachment model using POM IMC and tendency of increasing compression was seen at nonworking side of Hader bar attachment model using POM IMC. 7. Under $25^{\circ}$ lateral load condition, better stress distribution pattern was seen at working side of combination bar attachment model using POM IMC but tendency of increasing stress was seen on working side of Hader bar attachment model using POM IMC. 8. Under $25^{\circ}$ lateral load condition, stress reduction was seen at nonworking side of combination bar attachment model using POM IMC but tendency of increasing stress was seen at nonworking side of Hader bar attachment model using POM IMC.

  • PDF

임플랜트 Overdenture의 Bar설계에 따른 하악지지조직의 광탄성학적 응력분석 (PHOTOELASTIC STRESS ANALYSIS ON THE MANDIBLE CAUSED BY IMPLANT OVERDENTURE)

  • 강정민;방몽숙
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.327-353
    • /
    • 1994
  • This study was performed to evaluate the effects of number and alignment of implant fixture and various bar designs on the retention of denture and the stress distribution. Six kinds of photoelastic mandibular models and nine kinds of overdenture specimens were designed. A unilateral vertical load was gradually applied on the right first molar to calculate the maximal dislodgement load of each specimen. A unilateral vertical load of 17 Kgf was applied on the right first molar and a vertical load of 10 Kgf was applied on the interincisal edge region. The stress pattern which developed in each photoelastic model was analyzed by the reflection polariscope. The results obtained were as follows: 1. The maximal dislodgement load reversely increased with the distance from the loading point to the implant fixture, while it linearly increased with that from the most posterior implant fixture to the mesial clip. The maximal dislodgement load also increased with the use of a cantilever bar. 2. Under the posterior vertical load, the stress to the supporting tissue of the denture base increased with the distance from the loading point to the implant future. The stress concentration on the apical area of the implant future reversely increased with the distance from the loading point to the implant future. 3. In the overdentures supported by two implant fixtures under the posterior vertical load. the specimen implanted on lateral incisor areas with a cantilever bar exhibited more favorable stress distribution than that without a cantilever bar. The specimen implanted on the canine areas without a cantilever bar, however, exhibited more favorable stress distribution. 4. In the overdentures supported by three implant fixtures. the specimen implanted ell the midline and canine areas exhibited more favorable stress distribution than that implanted oil the midline and the first premolar areas. 5. In the overdentures supported by four implant fixtures. the specimen implanted with two adjacent implant fixtures exhibited more favorable stress distribution than that implanted at equal distance under the posterior vertical load. 6. Under the anterior vertical load, the overdentures supported by three implant fixtures exhibited stress concentration on the supporting structure of the middle implant future. In overdentures supported by two or four implant futures, no significant difference was noted in stress distribution between the types of bars. These results indicate that the greater the number of implant fixtures, the better the stress distribution is. A favorable stress distribution may be obtained in the overdentures supported by two or three implant fixtures, if the location and the design of the bar are appropriate.

  • PDF

상악 임플란트 overdenture에서 anchorage system과 의치상 구개피개가 하중전달에 미치는 영향 (EFFECT OF ANCHORAGE SYSTEMS AND PALATAL COVERAGE OF DENTURE BASE ON LOAD TRANSFER WITH MAXILLARY IMPLANT-SUPPORTING OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS)

  • 제홍지;전영찬;정창모;임장섭;황재석
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.397-411
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of anchorage systems and palatal coverage of denture base on load transfer in maxillary implant-supported overdenture. Material and methods: Maxillary implant -supported overdentures in which 4 implants were placed in the anterior region of edentulous maxilla were fabricated, and stress distribution patterns in implant supporting bone in the case of unilateral vertical loading on maxillary right first molar were compared with each other depending on various types of anchorage system and palatal coverage extent of denture base using three-dimensional photoelastic stress analysis. Two photoelastic overdenture models were fabricated in each anchorage system to compare with the palatal coverage extent of denture base, as a result we got eight models : Hader bar using clips(type 1), cantilevered Hader bar using clips(type 2), Hader bar using clip and ERA attachments(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4). Result: 1. In all experimental models, the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. In every experimental models with or without palatal coverage of denture base, maximum fringe orders on the distal ipsilateral implant supporting bone in an ascending order is as follows; type 3, type 1, type 4, and type 2. 3. Each implants showed compressive stresses in all experimental models with palatal coverage of denture base, but in the case of those without palatal coverage of denture base, tensile stresses were observed in the distal contralateral implant supporting bone. 4. In all anchorage system without palatal coverage of denture base, higher stresses were concentrated on the most distal implant supporting bone on loaded side. 5. The type of anchorage system affected in load transfer more than palatal coverage extent of the denture base. Conclusion: To the results mentioned above, in the case of patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant, and poor bone quality, selecting a resilient type attachment or minimizing the distal cantilevered bar is considered to be an appropriate method to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

간접유치장치 설계변화에 따른 하악유리단 국소의치의 광탄성 응력분석 (A PHOTOELASTIC STRESS ANALYSIS IN MANDIBULAR DISTAL - EXTENSION REMOVABLE PARTIAL DENTURES WITH VARIOUSLY DESIGNEO INDIRECT RETAINERS)

  • 강승종;계기성
    • 대한치과보철학회지
    • /
    • 제28권2호
    • /
    • pp.183-197
    • /
    • 1990
  • The purpose of this study was to analyse the magnitude and distribution of stresses using a Photoelastic model from and distal - extension removable partial dentures With four designed indirect retainers. The designs of the indirect retainers were as follows : Design No. 1 : Aker's clasp on 1st bicuspid with no indirect retainer. Design No. 2 : Aker's clasp on 1st bicuspid with indirect retainer on canine. Design No. 3 : Extension of the reciprocal arm of Aker's clasp toward incisal rest on canine. Design No. 4 : Connection with the indirect retainer as in No. 2 and extension of reciprocal arm of Aker' s clasp. A photoelastic model was made of the epoxy resin(PL - 1) and hardner(PLH - 1) and coated with plastic cement -1(PC -1) at the lingual surface of the epoxy model and set with chrome - cobalt partial dentures. A unilateral vertical load of 10kg to the right 1st molar and a vertical load of 10kg to the middle portion of the metal bar crossing both the 1st molars of the right and left, were applied. With the use of specially designed jig, fixture; loading device and the reflective circular polariscope, we obtained the following results : 1. When the unilateral vertical load and the vertical load of the middle portion of the metal bar were applied, design No. 2, 3 and 4 exhibited the higher stress concentration at the root apices and their surrounding tissues of the primary and secondary abutment teeth. 2. When the unilateral vertical load applied to design No. 2,3 and 4 the root apices of the primary and secondary abutment teeth and their surrounding tissues and the nonloaded side of edentulous area exhibited and even stress distribution. 3. When the vertical load was applied, the stress concentration fringe in the primary and secondary abutment teeth was in the order of No. 1,4,2 and 3. 4. No.1 and 4 exhibited the higher distrorted stress concentration at the primary teeth and the edentulous area in the nonloaded side. 5. No.2 design reduced the stresses at the apices of the alveoli of the primary abutment teeth bilaterally as well as on the crest of the residual ridge on the nonloaded side. 6. No. 2 design exhibited the most favorable stress distribution.

  • PDF

나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향 (The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant)

  • 이재인;김태영;조혜원
    • 구강회복응용과학지
    • /
    • 제29권3호
    • /
    • pp.224-235
    • /
    • 2013
  • 임플란트의 장기적인 성공을 위해 고정체의 형태, 외과적 술식, 골조직의 조건, 보철물 적합성, 주기적인 검사, 환자의 구강 위생 등에 많은 주의가 필요하다. 많은 연구에서 임플란트 지지 보철물의 적합도에 따른 임플란트의 예후에 관해 보고되었다. 보철물이 수동 적합되어야 임플란트의 상부구조및 하부구조에 해로운 응력을 야기하지 않는다고 보고되고 있으나 현재의 임플란트 보철물의 제작과정으로 진정한 수동 적합을 얻는 수 없다고 인정된다. 임상과정과 기공과정을 포함하여 임플란트 치료의 전 과정에서 오차가 발생하며, 이는 보철물을 변형을 야기하고 이는 임플란트 상부 보철물과 지대주 사이의 오차를 발생시킨다. 이러한 오차는 보철물 장착 후 보철물의 파절, 나사의 헐거움(screw loosening), 골소실, 골유착 실패와 같은 문제를 야기한다. 이런 오차에 의한 문제점은 cantilever의 존재, 과도한 교합력이 존재할 경우 더욱 증가된다고 보고되고 있다. 본 연구에서는 ITI 임플란트를 하악골의 견치후방의 무치악부에 3개를 식립하고 4-unit 캔틸레버 고정성 국소의치를 다양한 위치의 $100{\mu}m$ gap을 생성한 후 제작하고 gap을 생성하지 않은 고정성 국소의치와 30 lb의 하중하에서 광탄성 응력분석을 시행하여 응력분포 양상과상대적인 응력의 크기를 비교분석하였다.

잔존치조제 형태 및 총의치 인공치 크기가 무치하악 응력발생에 미치는 영향에 관한 3차원적 광탄성응력분석 (THREE DIMENSIONAL PHOTOELASTIC ANALYSIS OF STRESS OF EDENTULOUS MANDIBULE ACCORDING TO VARIOUS RIDGE SHAPES AND ARTIFICIAL TEETH SIZES)

  • 최창덕;유광희
    • 대한치과보철학회지
    • /
    • 제30권3호
    • /
    • pp.457-478
    • /
    • 1992
  • Electrical resistance strain gauges, brittle-coatings, Moir'e fringe analysis, photoelasticity methods, etc, have been employed in the study of stress analysis and three-dimensional photoelasticity method used in this experiment. The author fabricated a total of 24 samples of maxillary and mandibular edentulous ridges with normal and sharp shapes using epoxy resin, one of the photoelastic materials. In addition, complete denture made from artificial resin teeth in other twoo sizes, large and medium size, were affixed to the specimens and attached to an articulator. The following results were attained by cutting 9 slice specimens into 6mm thick portions, in accordance with the three dimensional photoelastic stress freezing method, to analyze stress distribution status under specific static loading in the central, lateral and protrusive occlusions of the shape of edentulous ridge. 1. In the case of central occlusion, when complete resin artificial teeth in large and medium sizes were used on normal and sharp alveolar ridges, high stress distribution was broadly shown in the labio-buccal sides, and low and concentrated in the lingual sides, in all cases. Generally, the highest stresses were shown at the top of the alveolus, or at 2mm below the top of the alveolus, particularly in the specimen 2, 3, and stresses were more or less the same in the symmetrical right and left sides. 2. In the case of lateral occlusion, when the same load was applied, high stresses were shown broadly at the working sides in both the labio-buccal and lingual sides, and low and concentrated at the balanced sides. The highest stresses were shown in the top of the alveolus on the working sides in specimen 2 portion, and the lowest stresses at the balanced sides in specimen 6, slightly higher stresses were shown at retromolar parts in the balanced sides. 3. In the case of protrusive occlusion, high stresses were broadly shown at the labio-buccal sides, and slightly higher stresses at the top 2, 4, and 6mm parts of the alveolus with concentration. The highest stresses were shown in specimen No. 5 and the lowes stresses in specimen 1, 9 and stresses were more of less the same at the symmetrical right and left sides.

  • PDF

편측성 후방연장 국소의치의 의치상에 이탈력이 가해질 때 간접유지장치가 장착된 치아 주위조직에 발생하는 응력에 관한 광탄성 분석 (A PHOTOELASTIC STRESS ANLYSIS IN THE SURROUNDING TISSUES OF TEETH SEATED BY INDIRECT RETAINERS WHEN APPLIED DISLODGING FORCES ON UNILATERAL DISTRAL EXTENTION PARTIAL DENTURES)

  • 손지영;이청희;조광헌
    • 대한치과보철학회지
    • /
    • 제34권3호
    • /
    • pp.415-430
    • /
    • 1996
  • 하악좌측 제1대구치와 하악 좌측 제2대구치, 하악우측 제2소구치를 주지대치로 사용하고 하악우측 제1대구치와 하악 우측 제2대구치가 상실된 Kennedy 분류 II급 후방연장 국소의치에서 하악좌측 측절치에 incisal hook rest를 간접유지장치로 가지는 경운(Model I), 하악좌측 견치에 cingulum rest를 간접유지장치로 가지는 경우(Model II), 하악좌측 제1소구치에 근심교합면 레스트를 간접유지장치로 가지는 경우(Model III)의 모형에서, 상실된 하악우측제2대구치의 원심 변연융선에 해당하는 부위에 고리를 형성하여 교합평면에서 전상방 $45^{\circ}$ 각도로 860gm의 이탈력을 가하여 간접유지장치가 장착된 지대치와 양쪽 인접치 주위조직에 발생하는 응력을 비교분석한 바 다음과 같은 결론를 얻었다. 3가지 모형 모두에서 지대치의 치근단 부위보다는 치경부의 협측부위와 근원심 부위에 압축응력이 나타났다. 지대치의 설측 치경부에는 3가지 모형 모두에서 약한 인장응력이 나타났다. 협측부위의 압축응력의 크기는 Model I이 가장 컸고, Model II, Model III순으로 나타났다. Model I과 Model II에서 지대치의 근심과 원심 치경부에 압축응력이 나타났으며, 압축응력의 크기는 Model I이 Model II보다 더 컸다. Model III에서는 지대치의 근심치경부에서만 압축응력이 나타났다. 전반적으로 압축응력의 크기는 Model I이 가장 컸고, Model II, Model III의 순으로 나타났다.

  • PDF