• Title/Summary/Keyword: photochemical efficiency

Search Result 138, Processing Time 0.03 seconds

Effects of Temperature Stress and Paraquat on SOD Activity and Photochemical Efficiency of PSII in Leaves of Araliaceae Plants (두릅나무과 식물의 SOD 활성과 광계II의 광화학적 효율에 미치는 온도 스트레스와 Paraquat의 영향)

  • 오순자;고정군;김응식;오문유;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • The effects of temperature stress and paraquat on the superoxide dismutase (SOD) activity and the photochemical efficiency of photosystem II were studied in the leaves of Araliaceae plants. The SOD activity of Acanthopanax koreanum leaf discs increased at 4$^{\circ}C$ and 28$^{\circ}C$, and increased significantly at 4$^{\circ}C$ ,28$^{\circ}C$ and 35$^{\circ}C$ in the presence of paraquat. However, the SOD activity of Dendropanax morbifera leaf discs decreased at 4$^{\circ}C$, 28$^{\circ}C$ and 35$^{\circ}C$ regardless of paraquat treatment. The photochemical efficiency of photosystem II, Fv/Fm, of leaf discs of A. koreanum and D. morbifera fell remarkably at 35$^{\circ}C$. In the presence of paraquat, the Ev/Fm values fell slightly at 4$^{\circ}C$ in A. koreanum leaf discs and at 35$^{\circ}C$, in D. morbifera leaf discs. These results indicate that A. koreanum plants are more resistant to temperature stress or oxidative stress than D. morbifera plants although their photochemical efficiency falls slightly at 4$^{\circ}C$ in the presence of paraquat.

  • PDF

Photocatalytic degradation of TCE using solar energy in POFR (플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해)

  • Jeong, Hee-Rok;Moon, Il;Joo, Hyun-Ku;Jun, Myung-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2002
  • The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

Photosynthetic Characteristics and a Sensitive Indicator for $O_3$-exposed Platanus orientalis (오존에 노출된 버즘나무의 광합성 특성과 민감성 지표)

  • Lee Jae-Cheon;Oh Chang-Young;Han Sim-Hee;Kim Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.220-226
    • /
    • 2005
  • We investigated the effect of $O_3$ on the photosynthetic characteristics of oriental plane (Platanus orientalis L.) that is used as a side tree or ornamental tree in Korea. Two-year-old oriental plane seedlings were transplanted to pots and transferred into a closed $O_3$ chamber, Photosynthetic pigment content and photosynthetic characteristics of leaves were measured every three weeks during 100 ppb $O_3$ fumigation. There was no visible foliar injury by $O_3$ exposure and the content of photosynthetic pigments did not show significant differences between control and $O_3$-treated seedlings. But photosynthetic rate, stomatal conductance, and water use efficiency in leaves of $O_3$-treated seedlings were reduced after six weeks of ozone fumigation. In addition, reduction of carboxylation efficiency and photochemical efficiency was observed in leaves of $O_3$-treated seedlings after three weeks and six weeks. In accordance with our results, carboxylation efficiency, the most sensitive parameter to $O_3$ stress, was considered to be a suitable indicator of $O_3$ sensitivity.

Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves (자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화)

  • Lee, Hae-Youn;Park, Youn-Il;Hong, Young-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.

Decrease of Photochemical Efficiency Induced by Methyl Viologen in Rice(Oryza sativa L.) Leaves is Partly due to the Down-Regulation of PSII

  • Kim, Jin-Hong;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.65-70
    • /
    • 2002
  • In the rice leaves treated with methyl viologen (MV), the photochemical efficiency of PSII (or $F_{v/}$F $m_{m}$) was significantly decreased, and significant portion of the photoinactivation process was reversible during the dark-recovery. The dark-reactivation process was relatively slow, reaching its plateau after 2-2.5 h of dark incubation. The damaged portion of functional PSII was 13%, based on the value of I/ $F_{o}$- I/ $F_{m}$ after this dark-recovery period. The reversible photoinactivation process of PSII function in the MV-treated leaves consisted of a xanthophyll cycle-dependent development of NPQ and a xanthophyll cycle-independent process. The latter process was reversible in the presence of nigericin. As well as the increase in the values of Chl fluorescence parameters, the epoxidation process during the dark-recovery after the MV-induced photooxidation was very slow. These results suggest that the photooxidative effect of MV is partly protected by the down-regulation of PSII before inducing physical damages in core proteins of PSII.I.I.I.I.

  • PDF

Photochemical hydrogen production from coupled semiconductor systems : CdS-WO3/RuO2, CdS-TiO2 (혼합반도체 시스템에서의 광화학적 수소제조 : CdS-WO3/RuO2, CdS-TiO2)

  • Suh, J.K.;Heo, G.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.5-15
    • /
    • 1993
  • Hydrogen production in visible light with the following semiconductor systems, $CdS-WO_3$, $CdS-TiO_2$, have been investigated in the presence of redox catalyst (Pt, $RuO_2$). MeOH, EtOH, isopropanol, sulfide/sulfite mixture, lactic acid were used as sacrifical reagents. The optimal condition for $H_2$ evolution was found to be in qgueous lactic acid media for $CdS-WO_3/RuO_2$. The photochemical efficiency for this system was 1.05 % and the $H_2$ evolution rate was 26.5ml/min. at $6.07{\times}10^{-5}$ einstein/sec photon rate

  • PDF

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

Photochemical Index Analysis on the Influence of LED Illumination Color Temperature on Donarium Cherry (도시야간조명의 LED 색온도별 겹벚나무의 광화학적 생리지표 해석)

  • Kim, Ji-Su;Yoo, Sung-Yung;Kim, Hway-Suh;Kim, Tae-Wan
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • In this study, the efficiency of photosynthetic electron transfer according to LED color temperature was verified in order to find a way to efficiently grow trees under night illumination. The experiment was carried out with White treatment, Warmwhite treatment, and non-treatment with donarium cherry. The study uses to a method for analyzing and evaluating the color temperature of an LED light source by photochemical analysis. We found that all treatments 115 DAT of maximum fluorescence amount(P) had the lowest. In the treatment using white light and the Warm-white light, the T amount of florescence of the late stage during the transition of the J-I level was increased, and the photosystem I electron transfer efficiency was decreased. Therefore, the electron transport efficiency of $RE1_O/CS$ and RE1o/RC were reduced. Especially, compared to Warmwhite, the light intensity increased greatly in the white-light treatment, The $PI_{TOTALABS}$ of 7 DAT was the highest value, but it was decreased to the lowest value on 115 DAT. This study has shown that the white treatment was low in electron transfer efficiency and soundness. Warmwhite-light treatments showed lower stress.

Investigation of the Incorporation Efficiency of $\beta$-Carotene into Liposomes

  • Rhim, Chae-Hwan;Lee, Kyong-Eun;Yuk, Hyun-Gyun;Lee, Sang-Chun;Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.177-178
    • /
    • 2000
  • Chemical and photochemical precesses during food storage an preparation rapidly degrade $\beta$-carotene, the most active form of carotenoids. We investigated the possibility of liposomes as tool to preserve $\beta$-carotene. Liposomes with $\beta$-carotene were prepared as multilamellar vesicles by using soybean phosphatidylcholine, in terms of the ratio of $\beta$-carotene to phospholipid and pH. Incorporated efficiency was 99.7% at 1:0.05 of phospholipid : $\beta$-carotene and at pH 9.0. As the concentration of $\beta$-carotene increased, the incorporated efficiency increased progressively. pH did not affect the incorporation efficiency greatly.

  • PDF