• Title/Summary/Keyword: photochemical

Search Result 828, Processing Time 0.023 seconds

Numerical Simulation of Ozone Concentration using the Local Wind Model in Pusan Coastal Area, Korea (부산연안역에서 국지풍모델을 이용한 오존농도의 수치모의)

  • Jeon, Byung-Il;kim, Yoo-Keun;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 1997
  • Numerical simulations of photochemical air pollution (CBM: Carbon-Bond Mechanisms under a theoretical three-dimensional local wind system are carried to clarify the fundamental characteristics of the effects of local wind on photochemical air pollution. According to the AWS data of Pusan coastal area and KMA, the surface wind of Pusan during summertime showed a very remarkable land and sea breeze circulation. The ozone concentration distribution using local wind model showed that high ozone concentration zone near coastal area moved toward inland In the afternoon. This change implies a sea breeze Increases the ozone concentration, but a land breeze decreases it in Pusan coastal area.

  • PDF

Photochromic Behavior and Its Stability of a New Bifunctional Dye Composed of Spirobenzopyran and a Cinnamoyl Moiety

  • Shen Kaihua;Kim Jae Hong;Kim Go Woon;Cho Min Ju;Lee Sang Kyu;Choi Dong Hoon
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2005
  • A novel bifunctional dye composed of spirobenzopyran and a cinnamoyl moiety was prepared and its photochromic behavior under the illumination of monochromatic UV light was investigated. This colorless bifunctional dye exhibits typical photochromism in both the film and in solution, through the structural and geometrical transformation from spirobenzopyran to merocyanine accompanied by a photocrosslinking reaction between the cinnamoyl moieties. Two kinds of photochemical reaction were selectively achieved by irradiation with monochromatic UV light at wavelengths of 275 and 365 nm, respectively. The effect of the selective photochemical reaction on the photochromism of the dye and its decaying behavior was investigated.

Photochemical Reduction of trans-1,2-Bispyrazylethylene (트란스-1,2-비스피라질에틸렌의 광화학적 환원)

  • Sang Chul Shim;Jeong Seok Chae
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 1977
  • Photochemical reduction of 1,2-bispyrazylethylene,a stilbene like heterocompound, was studied in hydrogen donating solvents and reduction product, 1, 2-bispyrazylethane, was identified. Salt and solvent effects on the quantum yields of the reduction, sensitization and quenching studies showed that the reactive state for the photochemical reduction of the compound is $(n,{\pi}^*)^1$ state rather than $({\pi},{\pi}^*)^1$ state.

  • PDF

Photochemical Degradation of Dimethyl Phthalate by Fe(III)/tartrate/H2O2 System

  • Feng, Xianghua;Ding, Shimin;Xie, Faping
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3686-3690
    • /
    • 2012
  • Photochemical degradation of dimethyl phthalate (DMP) in Fe(III)/tartrate/$H_2O_2$ system was investigated utilizing fluorescent lamps as the primary light source. Effects of initial pH, light source, and initial concentration of each reactant on DMP photodegradation was examined. The results show that the system was able to effectively photodegrade DMP utilizing visible light. Fluorescent lamp, halide lamp, UV lamp and sunlight could all be used as the light sources. The optimal pH ranged among 3.0-4.0 for the system. Increases of the initial concentrations of Fe(III) and $H_2O_2$ accelerated the photodegradation of DMP, whereas excessively high initial tartrate concentration resulted in the decrease of photodegradation efficiency and rate of DMP.

Recent advances in utilization of photochemical internalization (PCI) for efficient nano carrier mediated drug delivery

  • Park, Wooram;Park, Sin-Jung;Lee, Jun;Na, Kun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Despite recent progresses in nanoparticle-based drug delivery systems, there are still many unsolved limitations. Most of all, a major obstacle in current nanoparticle-based drug carrier is the lack of sufficient drug delivery into target cells due to various biological barriers, such as: extracellular matrix, endolysosomal barrier, and drug-resistance associated proteins. To circumvent these limitations, several research groups have utilized photochemical internalization (PCI), an extension of photodynamic therapy (PDT), in design of innovative and efficient nano-carriers drug delivery. This review presents an overview of a recent research on utilization of PCI in various fields including: anti-cancer therapy, protein delivery, and tissue engineering.

Photochemical and Thermal Solvolysis of Picolyl Chlorides

  • Shim Sang Chul;Choi Seung Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 1982
  • Photochemical and thermal solvolysis of 2,3,4-picolyl chlorides (2,3,4-PC) were studied in amine solvents and the results were correlated with the electronic structures calculated by PPP-SCF-MO CI method. Activation parameters show that the thermal solvolysis of PC is $S_N2$ type rcaction. The rates of thermal reaction in pyridine or t-butylamine solvent decrease in the order of 2-PC > 3-PC > 4-PC. These results are consistent with the predictions based on the electron densities of picolyl chlorides. In photosolvolysis, the same products as those of thermal reactions were obtained. The results indicate that photochemical solvolysis undergoes through heterolytic cleavage. Relative quantum yields of photosolvolysis of 2,3,4-picolyl chlorides in t-butylamine solvent were determined to be 0.73, 1, and 0.50 respectively. These results are in good agreement with the electron densities of the excited triplet state of picolyl chlorides.

Photochemical C$_4$-Cycloadduct Formation between 5(E)-Styryl-1,3-dimethyluracil and Some Olefins-Via Photochemical Diels-Alder Type [4 + 2] Adduct

  • Shim, Sang-Chul;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.376-380
    • /
    • 1987
  • The cyclobutane forming photocycloaddition reaction of 5(E)-styryl-1,3-dimethyluracil with some olefins occurs on the 5,6-double bond of uracil ring rather than the expected central double bond via an intermediate, probably the photochemical Diels-Alder type adduct. This intermediate formed on short term irradiation of 5(E)-styryl-1,3-dimethyluracil and 2,3-dimethyl-2-butene solution is converted into the $C_4$-cycloadduct on the prolonged irradiation. Quantum yield of the intermediate formation is not linear with the concentration of 2,3-dimethyl-2-butene probably due to the secondary reaction accompanied with the complex reaction kinetics. The intermediate is formed from the lowest excited singlet state.

Photochemical Reaction of Dichloromethane in Aqueous Solution

  • 박형련;정영태;김명선;우희권;함희숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.287-291
    • /
    • 1997
  • The photochemical reaction of aqueous dichloromethane in the absence (saturated with argon) and the presence of O2 (saturated with air or oxygen) has been investigated using 184.9 nm UV light. The irradiation of the solution causes the formation of 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane and chloride ion. The initial quantum yield of the products in the absence of oxygen was determined to be 8.6 × 10-3, 7.3 × 10-3, 4.4 × 10-3 and 2.3 × 10-2, respectively. In addition to these main products, small amounts of 1,2,3-trichloropropane, 1,1,2,2,3-pentachloropropane, 1,1,2,3,3-pentachloropropane, 1,3-dichloropropane and 1,1,2,2,3,3-hexachloropropane were detected. In the presence of oxygen, hydrogen peroxide was also detected along with the products listed above. With increasing the concentration of oxygen, while formation of the chlorinated organic products diminished, formation of chloride ion increased. Probable reaction mechanisms for the photochemical reaction were presented on the basis of products analysis.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

Photochemical Response Analysis on Different Seeding Date and Nitrogen (N) level for Maize (Zea mays L.) (옥수수의 파종시기 및 질소수준별 광화학적 반응 해석)

  • Park, So-Hyun;Yoo, Sung-Yung;Lee, Min-Ju;Park, Jong-Yong;Song, Ki-Tae;Kim, Tae Wan;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electron-transport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double N-fertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from $Q_A$ to $Q_B$ per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.