• Title/Summary/Keyword: photocatalytic activities

Search Result 105, Processing Time 0.033 seconds

Characterization and Photocatalytic effect of ZnO nanoparticles synthesized by spray-pyrolysis method

  • Lee, Sang-Duck;Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Kang-Suk;Kim, Young-Dok;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.101-101
    • /
    • 2010
  • ZnO shows a direct band gap of 3.37eV, large exciton binding energy (~60 meV), high oxidation ability, high sensitivity to many gases, and low cost, and it has been used in various applications such as transparent electrodes, light emitting diodes (LEDs), gas sensors and photocatalysts. Among these applications ZnO as photocatalyst has considerably attracted attention over the past few years because of its high activities in removing organic contaminants generated from industrial activities. In this research, ZnO nanoparticles were synthesized by spray-pyrolysis method using the zinc acetate dihydrate as starting material at synthesis temperature of $900^{\circ}C$ with concentration varied from 0.01 to 1.0M. The physical and chemical properties of the synthesized ZnO nanoparticles were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR), and UV-vis spectroscopy. The Miller indices of XRD patterns indicate that the synthesized ZnO nanoparticles showed a hexagonal wurtzite structure. With increased precursor concentration, a primary, secondary particle sizes of ZnO nanoparticles increased by 0.8 to $1.5{\mu}m$ and 15 to 35nm, and their crystallinity was improved. Methyleneblue (MB) solution ($1{\mu}M$) as a test comtaminant was prepared for evaluating the photocatalytic activities of ZnO nanoparticles synthesized in different precursor concentration. The results show that the photocatalytic efficiency of ZnO nanoparticles was gradually enhanced by increased precursor concentration.

  • PDF

The Syntheses, Characterizations, and Photocatalytic Activities of Silver, Platinum, and Gold Doped TiO2 Nanoparticles

  • Loganathan, Kumaresan;Bommusamy, Palanisamy;Muthaiahpillai, Palanichamy;Velayutham, Murugesan
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.81-90
    • /
    • 2011
  • Different weight percentages of Ag, Pt, and Au doped nano $TiO_2$ were synthesized using the acetic acid hydrolyzed sol-gel method. The crystallite phase, surface morphology combined with elemental composition and light absorption properties of the doped nano $TiO_2$ were comprehensively examined using X-ray diffraction (XRD), $N_2$ sorption analysis, transmission electron microscopic (TEM), energy dispersive X-ray, and DRS UV-vis analysis. The doping of noble metals stabilized the anatase phase, without conversion to rutile phase. The formation of gold nano particles in Au doped nano $TiO_2$ was confirmed from the XRD patterns for gold. The specific surface area was found to be in the range 50 to 85 $m^2$/g. TEM images confirmed the formation a hexagonal plate like morphology of nano $TiO_2$. The photocatalytic activity of doped nano $TiO_2$ was evaluated using 4-chlorophenol as the model pollutant. Au doped (0.5 wt %) nano $TiO_2$ was found to exhibit higher photocatalytic activity than the other noble metal doped nano $TiO_2$, pure nano $TiO_2$ and commercial $TiO_2$ (Degussa P-25). This enhanced photocatalytic activity was due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

Control of Airborne Organic Pollutants Using Plug-Flow Reactor Coated With Carbon Material-Titania Mixtures Under Visible-Light Irradiation

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Mo-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1263-1271
    • /
    • 2013
  • Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of $TiO_2$ nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, $TiO_2$-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the $TiO_2$-GO composites. The average efficiencies of the $TiO_2$-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified $TiO_2$ powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified $TiO_2$ powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a $TiO_2$-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.

Photocatalytic activity of Fe treated AC/TiO2 composites between visible light and UV light irradiation (가시광선과 UV광선에 의한 Fe 처리된 AC/TiO2 복합체의 광분해활성)

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1760-1767
    • /
    • 2010
  • FAT compounds photocatalysts were prepared with $TiOSO_4{\cdot}xH_2O$ (TOS) by a sol-gel method. The samples were characterized by scanning electron microscopy (SEM), BET specific surface area, X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDX). The SEM results showed that ferric compounds and titanium dioxide were fixed onto the AC surfaces. The XRD results showed that Fe-AC/$TiO_2$ composites mostly contained anatase phase. EDX showed the presence of C, O, and Ti with Fe peaks in all samples. The photocatalytic activities were evaluated by the photocatalytic oxidation of methylene blue (MB) solution, via compare photodegradation of MB solution under visible light and UV light separately. Fe-AC/$TiO_2$ composites had an excellent photocatalytic under strong visible light irradiation. A small amount of Fe ions in AC/$TiO_2$ particles could obviously enhance their photocatalytic activity.

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

A Study OH the Character and Activity of $TiO_2$ Photocatalysts Prepared With Various Condition (다양한 조건에서 제조된 $TiO_2$ 광촉매 특성 및 활성에 관한 연구)

  • Kim, Seung-Min;Youn, Tae-Kawun;Hong, Dae-Il;Kim, Sung-Kuk;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.932-938
    • /
    • 2005
  • [ $TiO_2$ ] nanoparticles were prepared from the precipitation in $TiCl_4$ and the sol-gel profess in $Ti(OC_3H_7)_4$ as starting materials with various synthetic conditions. The samples were characterized by XRD, SEM, and TEM testing techniques. The photocatalytic degradation of congo red has been investigated in $TiO_2/UV$ process to evaluate photocatalytic activities for the samples. $TiO_2$ nanoparticles calcined at $400^{\circ}C$ had the best photocatalytic activity with the rate constant of the degradation of congo red as $0.0319\;min^{-1}$. The rate constant of $TiO_2$ photocatalysts was increased with the calcination temperature under $400^{\circ}C$ and decreased with the calcination temperature upper $400^{\circ}C$. In the case of $TiO_2$ photocatalysts, the photocatalytic activity wasn't greatly affected by the frequencies of usage. In the similar synthesis condition, the degradation efficiency of the $TiO_2$ particle prepared by $TiCl_4$ was increased to 8.8%, when the rate was compared with the sample prepared by $Ti(OC_3H_7)_4$. The photocatalytic activities of $TiO_2$ photocatalysts synthesized by $Ti(OC_3H_7)_4$ with various conditions were also discussed.

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination (기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성)

  • Lee, Hyeryeon;Lim, Chaehun;Lee, Raneun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.632-639
    • /
    • 2021
  • In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.

Effects of Calcination Temperature on Ti02 Photocatalytic Activities (TiO2 광촉매 활성에서 소성온도의 영향)

  • Kim Seung-Min;Yun Tae-Kwan;Hong Dae-Ii
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.889-896
    • /
    • 2005
  • The nanosized $TiO_2$ photocatalysts were prepared by the hydrolysis of $TiCl_4$ and calcined at different temperatures. The resulting materials were characterized by TGA, DSC, XRD, and TEM testing techniques. XRD, TEM, and BET measurements indicated that the particle size of $TiO_2$ was increased with rise of calcination temperature and surface area was decreased with rise of it. The prepared $TiO_2$ photocatalysts were used for the photocatalytic degradation of congo red. The effects of calcination temperature, $TiO_2$ loading, the initial concentration of congo red, and usage frequencies were investigated and the rate constants were determined by regressing the experimental data. Calcination is an effective treatment to increase the photo activity of nanosized $TiO_2$ photocatalysts resulting from the improvement of crystallinity. The optimum calcination temperature of the catalyst for the efficient degradation of congo red was found to be $400^{\cric}C$. The rate constant was decreased with increase in the initial concentration of congo red and increased with increase in the $TiO_2$ loading. In the case of $TiO_2$ photocatalysts, the photocatalytic activity wasn't greatly affected by the usage frequencies.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.