• Title/Summary/Keyword: photocatalysts

Search Result 236, Processing Time 0.027 seconds

Photocatalytic Degradation Characteristics of Organic Compound by Boron-doped TiO2 Catalysts

  • Nam, Chang-Mo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.649-656
    • /
    • 2010
  • Boron-doped $TiO_2$ photocatalysts were synthesized by a modified sol-gel method and their photocatalytic activities were performed and compared with those of pure synthetic and commercial $TiO_2$ catalysts under UV or visible light conditions. Pure $TiO_2$ itself exhibited very negligible photocatalytic performance under visible light conditions in the aspects of toluene decomposition reactions, although significant decomposition potential was observed as expected with UV light conditions. However, boron doping over $TiO_2$ significantly improved photocatalytic activity particularly under visible conditions, where over 95% degradation of toluene was achieved with 1wt% $B-TiO_2$ within 2 hrs. All the decomposition reactions seemed to follow pseudo first-order kinetics. The effects of boron-doping and its characteristics are further discussed through the kinetic studies and comparison of results.

판상형 산화아연의 합성 및 응용에 관한 연구 동향

  • Jang, Ui-Sun
    • Ceramist
    • /
    • v.20 no.4
    • /
    • pp.55-73
    • /
    • 2017
  • As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropic growth rate along the [0001] direction. However, such typical growth habit leads to decrease the surface area of the (0001) plane, which plays a central role in not only UV lasing action but also photocatalytic reaction. This fact lead us to develop ZnO crystal with enhanced polar surface area through crystal growth control. The purpose of this review is to provide readers a simple route to plate-type ZnO crystal with highly enhanced polar surfaces and their applications for UV-laser, photocatalyst, and antibacterial agents. In addition, we will highlight the recent study on pilot-scale synthesis of plate-type ZnO crystal for industrial applications.

Preparati on and Characterization of $LnTaO_4$ (Ln = La, Nd, Sm, Dy, Er and Tm)

  • Fujita, Atsushi;Matsushita, Hiroaki;Katsui, Akinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1116-1117
    • /
    • 2006
  • Lanthanide tantalite $LnTaO_4$ (Ln= La, Nd, Sm, Dy, Er and Tm) was synthesized by a solid state reaction between mixed powders of $Ln_2O_3$ and $Ta_2O_5$. The single-phase $LnTaO_4$ was prepared by sintering at temperatures of 1423-1673 K in air. The SEM observation showed that the particles were provided with the growth steps and the depeloped facets. The photocatalytic activity for water splitting of $LnTaO_4$ prepared was measured under UV light irradiation. The activity obtained was higher than that previously reported. These results suggested the crystallinity of $LnTaO_4$ photocatalysts correlates closely with the efficiency of water splitting.

  • PDF

Current Status of Solar-energy-based CO2 Conversion to Fuels (태양에너지를 이용한 이산화탄소 전환 기술의 현황)

  • Kim, Ye Ji;Kim, Jong Min;Jung, Yeon Sik
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.122-134
    • /
    • 2017
  • As a promising solution to global warming and growing energy demand, photocatalytic $CO_2$ conversion to useful fuels is widely studied to enhance the activity and selectivity of the $CO_2$ photoreduction reactions. In this review, an overview of fundamental aspects of the $CO_2$ reduction photocatalysts is provided. The recent development of the photocatalyst is also discussed, focusing on the mechanisms of light harvesting and charge transfer. Besides, this review sets its sight on inspiring new ideas toward a practical $CO_2$ conversion technology.

Photocatalytic Decomposition of Toluene Vapor by Bare and TiO2-coated Carbon Fibers

  • Luo, Yuan;Kim, Kwang-Dae;Seo, Hyun-Ook;Kim, Myoung-Joo;Tai, Wei Sheng;Lee, Kyu-Hwan;Lim, Dong-Chan;Kim, Young-Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1661-1664
    • /
    • 2010
  • The photocatalytic decomposition of toluene vapor by bare and $TiO_2$-coated carbon fibers was studied. Atomic layer deposition (ALD) was used to perform the $TiO_2$ coating. We show that, under our conditions, the photocatalytic activity of bare carbon fibers was comparable with that of $TiO_2$ films, which are known to be good photocatalysts. The origin of the high photocatalytic activity of bare carbon fibers is discussed.

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light

  • Wang, Wei;He, Mingyi;Zhang, Huan;Dai, Yatang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.179-182
    • /
    • 2016
  • In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.

Recent Progress in Synthesis of Plate-like ZnO and its Applications: A Review

  • Jang, Eue-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • Zinc oxide (ZnO) is one of the most versatile semiconductors, and one-dimensional (1D) ZnO nanostructures have attracted significant interest for use in ultraviolet (UV) lasers, photochemical sensors, and photocatalysts, among other applications. It is known that 1D ZnO nanowires can be fabricated readily owing to the anisotropic growth of ZnO along the [0001] direction. However, this type of growth results in a decrease in the surface area of the (0001) plane, which plays a vital role not only in UV lasing but also in the photocatalytic process. Thus, we attempted to synthesize ZnO crystals with an increased polar surface area by controlling the crystal growth process. The purpose of this review is to propose a simple route for the synthesis of plate-like ZnO crystals with highly enhanced polar surfaces and to explore their feasibility for use in UV lasers as well as as a photocatalyst and antibacterial agent. In addition, we highlight the recent progress made in the pilot-scale synthesis of plate-like ZnO crystals for industrial applications.

Preparation of $TiO_2$-Coated Polypropylene Beads by PCVD Process for Phenol Removal

  • Pham, Hung-Cuong;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.185-185
    • /
    • 2009
  • Polypropylene beads (PP) coated with $TiO_2$ thin films were prepared by a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and were used to remove phenol in aqueous solution. The $TiO_2$ thin films of 416 nm thickness were coated on the PP particles uniformly. As the number of $TiO_2$-coated PP beads increases, the phenol is degraded faster, because of larger total surface area of photocatalysts for photodegradation. This study shows that a rotating cylindrical PCVD reactor can be a good method to prepare the particles coated with high-quality $TiO_2$ thin films, which can be applied to the pollutant removal by a photodegradation reaction of $TiO_2$ with high efficiency.

  • PDF

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W.;Kim, J. S.
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.61-64
    • /
    • 2018
  • The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

Effect of Heat Treatment and Platinum Loading on CdS Particles in the Photocatalytic Alanine Synthesis

  • Lee, Bu-Yong;Kim, Bong-Gon;Cho, Cheol-Rae;Sakada, Tadayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.700-704
    • /
    • 1993
  • The photocatalytic alanine and hydrogen production reaction were studied by using CdS as a semiconductor photocatalysts. The rate of alanine and hydrogen production depends strongly on the temperature in heat treatment of CdS powder. In particular, the rate of alanine production, which was observed using Pt/CdS(A)-(CdS from Mitsuwa), was increased about six times than that of using Pt/CdS(B)-(CdS from Furruchi) under the same heat treatment condition at 500$^{\circ}$C. And the photocatalytic activity for alanine production using bare CdS(A) or Pt/CdS(A) was almost same with increasing temperature in heat treatment in the range of 100-600$^{\circ}$C. From X-ray diffraction data and photoluminescence spectrum, we conclude that the crystal structure changes of CdS(A) or strong interaction at interface of Pt and CdS contribute to increasing the rate of alanine and hydrogen production reaction.