• 제목/요약/키워드: photo-initiator

검색결과 44건 처리시간 0.02초

인쇄회로기판용 solder resist의 해상성과 밀착력 (Resolution and Adhesion Properties of Solder Resist for Printed Circuit Board)

  • 최성호;황성진;김형순
    • 한국재료학회지
    • /
    • 제17권12호
    • /
    • pp.676-681
    • /
    • 2007
  • According to progress rapidly digitalization, networked and mobilization of electronics industry, there are demands for being smaller, thinner, more light, and more efficient complex functions of electronic devices which are wireless devices, semi-conductors, packages and mobile devices. Therefore, the solder resist on a printed circuit board have been required with the high resolution and the eco-friendly materials in the surface treatments such as high heating process and coating process with electrolysis. In this study, the photoinitiator initiator and monomers of the solder resist were prepared with their contents for reducing the occurrence of the under-cut. We investigated the sample surface by UV/VIS spectrometer, FT-IR, OM after HASL and ENIG process. From our results, it is possible to get a high adhesion of resist with optimal contents between the photoinitiator initiator and monomers after surface treatments.

Renewable Monomer Based on Rosin in Photoinitiated Radical Polymerization

  • Shim, Sang-Yeon;Hong, Young-Taik
    • 한국응용과학기술학회지
    • /
    • 제17권3호
    • /
    • pp.192-197
    • /
    • 2000
  • Rosin moeity-containing monomer was prepared by the reaction of abietic acid with 2-hydroxyethyl methacrylate in tetrahydrofuran(THF) using diethyl azodicarboxylate as a catalyst. This new monomer was photo-polymerized to give thin films in the presence of a radical type initiator. The rate of photo-polymerization and amount of cured polymer were determined using the residual yield method. A thermogravimetric analysis of the cured polymer showed that the film was stable up to 170oC, at which point the polymer film has lost 10 wt % of its weight.

자외선 경화형 고경도 PET 필름의 제조 및 특성 (Preparation and Properties of UV Curable Hard Coating Materials on PET)

  • 김현준
    • 반도체디스플레이기술학회지
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2014
  • UV curable transparent hard coating materials have been developed to improve the mechanical and optical properties of PET substrate. The coating materials were synthesized using various urethane acrylate oligomers, monomers, photo initiators, and leveling agents. The materials were coated on PET substrates and UV cured. The hard coated PET films were shown to have the good scratch resistance and transparency. When the urethane acrylate oligomer with more functional groups was introduced into the coating solution, the mechanical and optical properties were improved. However the higher concentration of 9-functional oligomer resulted in the decrease of workability. The addition of trimethylolpropane ethoxylate$(EO/OH)_9$ triacrylate(TMPETA) to coating solution improved the workability and properties. As a result, the UV cured film from the formulation of urethane acrylate oligomer with 9-functional groups, TMPETA as a monomer, IRACURE 754 as a photo initiator and BYK-340 as a leveling agent showed the best mechanical and optical properties in this study.

Evaluation of New Selective Molecularly Imprinted Polymers for the Extraction of Resveratrol from Polygonum Cuspidatum

  • Cao Hui;Xiao Jian Bo;Xu Ming
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.324-330
    • /
    • 2006
  • Four different molecularly imprinted polymers (MIPs) were prepared using resveratrol as the template, methacrylic acid (MAA) or acrylamide (AA) as functional monomers, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and thermo- or photo-induced polymerization. The ability of the different polymers to rebind selectively not only the template but also other phenols was evaluated. In parallel, the influence of the different templates and functional monomers used during polymer syntheses on the performance of the obtained MIPs was also studied through different rebinding experiments. The binding ability and selectivity of the polymer were studied by static balance method and Scatchard analysis. It was concluded that AA-based polymer by photo-induced polymerization presents the best properties to be used as a selective absorbent for the extraction of resveratrol.

광경화성 레진의 성분 변화에 대한 소수성 표면 제작을 위한 공정 조건 (Process Conditions for the Fabrication of Hydrophobic Surfaces with Different Photo-curable Resins)

  • 홍성호;우흥식
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.267-273
    • /
    • 2020
  • This study experimentally investigates hydrophobic surfaces fabricated via additive manufacturing. Additive manufacturing, commonly known as 3D printing, is the process of joining materials to fabricate parts from 3D model data, usually in a layer-upon-layer manner. Digital light processing is used to fabricate hydrophobic surfaces in this study. This method uses photo-curable resins and ultraviolet (UV) sources. Moreover, this technique generally has faster shaping speeds and is advantageous for the fabrication of small components because it enables the fabrication of one layer at a time. Two photo-curable resins with different compositions are used to fabricate micro-patterns of hydrophobic surfaces. The resins are composed of a photo-initiator, monomer, and oligomer. Experiments are conducted to determine suitable process conditions for the fabrication of hydrophobic surfaces depending on the type of resin. The most important factors affecting the process conditions are the UV exposure time and slice thickness. The fabrication capability according to the process conditions is evaluated using the side and top views of the micro-patterns observed using a microscope. The micro-patterns are collapsed and intertwined when the exposure time is short because sufficient light (heat) is not applied to cure the photo-curable resin with a given slice thickness. On the other hand, the micro-patterns are attached to each other when the exposure time is prolonged because the over-curing time can cure the periphery of a given shape. When the slice is thicker, the additional curing area is enlarged in each slice owing to the straightness of UV light, and the slice surface becomes rough.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성 (Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method)

  • 김윤정;김정훈;심보연;이명규;김은경
    • 한국광학회지
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2010
  • 아크릴레이트계 모노머를 사용한 최적화 된 포토폴리머에 안트라센 형광폴리머를 첨가하여 형광 특성을 가지는 포토폴리머를 제조하고, 514 nm 레이저를 이용하여 2-beam coupling 방법으로 형광 포토폴리머 필름 위에 회절격자를 형성하였다. 기록 시작 후 30초 이내에 선명한 fluorescent line pattern 이 형성되었으며, 회절격자 형성 뒤, 패턴이 형성된 부분에서 형광 세기의 증가가 관찰되었다. 기록 시 간섭 빔 앞에 mask pattern 을 이용하여 $50\;{\mu}m$ gap electrode 패턴을 형성하였다. 이 때 형성된 패턴은 micron scale gap패턴 안에 회절격자로부터 생성된 submicron scale의 grating line을 보였다. 이는 beam의 광 고분자 film 표면에 대한 각도($3.6^{\circ}$, $15^{\circ}$), 패턴에 사용된 광 고분자의 굴절률 등으로부터 Bragg's equation 을 사용하여 계산된 이론적인 grating 간격 ($0.6\;{\mu}m$) 과 오차범위 안에서 일치 하였다.

마이크로 라만을 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향 관찰 (Observation of the silicon acrylate effect on the photo-polymerization reaction using micro raman spectroscopic technique)

  • 오향림;홍진후;유정아
    • 분석과학
    • /
    • 제17권3호
    • /
    • pp.225-229
    • /
    • 2004
  • UV 경화반응에 의하여 형성된 코팅의 성질을 향상시키기 위하여 첨가제로 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향을 마이크로 라만 분광법을 사용하여 관찰하였다. 광중합 반응의 반응체는 아크릴계 올리고머와 모노머를 사용하였으며 광 개시제로는 Darocur 1173을 사용하였다. 첨가제 실리콘 아크릴레이트는 광 경화 수지에 각각 0-3 wt% 첨가하였으며, UV를 조사하여 중합 반응시킨 후 공기-박막 경계면으로부터 두께에 따른 라만 스펙트럼을 관찰하였다. 광중합 반응의 진행정도는 1410과 $1635cm^{-1}$에 나타나는 중합에 직접 관여하는 아크릴기 ($-C=CH_2$)와 관련된 띠의 세기로부터 구하였다. 관찰된 결과에 따르면 마이크로라만으로부터 얻은 심도 스펙트럼 (depth profile)은 두께에 따른 경화반응의 진행 정도를 관찰할 수 있을 뿐만 아니라 경화 반응에 미치는 여러 요인에 대한 이해를 돕는 좋은 방법이 될 수 있음을 알 수 있다.

LCD 컬러 필터용 알칼리 가용성, 감광성 폴리에스터의 합성과 물성 (Synthesis and Properties of Alkali-Soluble and Photosensitive Polyester Derivatives for LCD Color-Filter)

  • 이상훈;조영곤;김주성;배진영
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.442-446
    • /
    • 2007
  • 알칼리 가용성, 광경화형 폴리에스터를 합성하기 위해 플루오렌형 에폭시 아크릴레이트에 다양한 산 2 무 수물을 반응시켰다. LCD (liquid crystal display) 컬러 필터용 블랙매트릭스를 제조하기 위해서 합성된 폴리에스터와 카본블랙 등을 혼합하여 포토레지스트 용액을 조제한 후 리소그래피 공정을 통해 유리 기판 위에 블랙매트릭스패턴을 형성하였다. 합성된 다양한 폴리에스터의 특성과 리소그래피 패턴을 비교 조사하였다.

새로운 광증감제를 사용한 치과용 광중합형 복합레진의 기계적 특성 (Physical Properties of Light Cured Dental Composite Resin with Novel Photosensitizers)

  • 선금주;이희경
    • 대한치과기공학회지
    • /
    • 제35권4호
    • /
    • pp.313-320
    • /
    • 2013
  • Purpose: The purpose of this study was to know the physical properties of UDMA dental composite resins containing two photosensitizers, PD, DA, as a photosensitizer instead of CQ. We want to know Remaining Double Bond(RDB) of UDMA unfilled resin and diametral tensile strength and flexural strength of composite resin containing PD and DA were compared with those of CQ, most widely used photosensitizer for dental composite resins. Methods: The RDB of UDMA studied by FT-IR spectroscopy increased with irradiation time. The composite resins were tested for their physical properties. The dental composite resins were made with UDMA as a monomer, silanized silica as filler, N,N-dimethylaminoethyl methacrylate (DAEM) as amine initiator, and one of the two kinds of new photosensitizers. Results: The relative RDB of UDMA was in the order: DA > CQ > PD but the physical properties of the composite resins show PD and DA with higher results compared with that containing CQ. The reason for the results is that PD and DA serve not only as a photosensitizer but also as a photo-crosslinking agent. Conclusion: PD and DA show as effective photosensizers, suitable for UDMA dental composite resin compare with a higher efficiency than CQ.