• Title/Summary/Keyword: photo current

Search Result 415, Processing Time 0.028 seconds

Design and Analysis of 16 V N-TYPE MOSFET Transistor for the Output Resistance Improvement at Low Gate Bias (16 V 급 NMOSFET 소자의 낮은 게이트 전압 영역에서 출력저항 개선에 대한 연구)

  • Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper we proposed a new source-drain structure for N-type MOSFET which can suppress the output resistance reduction of a device in saturation region due to soft break down leakage at high drain voltage when the gate is biased around relatively low voltage. When a device is generally used as a switch at high gate bias the current level is very important for the operation. but in electronic circuit like an amplifier we should mainly consider the output resistance for the stable voltage gain and the operation at low gate bias. Hence with T-SUPREM simulator we designed devices that operate at low gate bias and high gate bias respectively without a extra photo mask layer and ion-implantation steps. As a result the soft break down leakage due to impact ionization is reduced remarkably and the output resistance increases about 3 times in the device that operates at the low gate bias. Also it is expected that electronic circuit designers can easily design a circuit using the offered N-type MOSFET device with the better output resistance.

Nanocrystalline Antimony Oxide Films for Dye-Sensitized Solar Cell Applications

  • Kim, Ji-Hye;Jang, Ji-Yeon;Kim, Sung-Chul;Han, Chi-Hwan;Kim, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1204-1208
    • /
    • 2012
  • A new photoelectrode composed of $Sb_6O_{13}$ nanoparticles with the size of 20-30 nm has been prepared via thermolysis of a colloidal antimony pentoxide tetrahydrate ($Sb_2O_5{\cdot}4H_2O$) suspension. The $Sb_6O_{13}$ electrode showed good semiconducting properties applicable to dye-sensitized solar cells (DSSCs); the energy band gap was estimated to be $3.05{\pm}0.5$ eV and the position of conduction band edge was close to those of $TiO_2$ and ZnO. The DSSC assembled with the $Sb_6O_{13}$ photoelectrode and a conventional ruthenium-dye (N719) exhibited the overall photo-current conversion efficiency of 0.74% ($V_{oc}$ = 0.76 V, $J_{sc}=1.99\;mAcm{-2}$, fill factor = 0.49) under AM 1.5, $100\;mWcm^{-2}$ illumination.

Effect of Ultrathin Al2O3 Layer on TiO2 Surface in CdS/CdSe Co-Sensitized Quantum Dot Solar Cells

  • Sung, Sang Do;Lim, Iseul;Kim, Myung Soo;Lee, Wan In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.411-414
    • /
    • 2013
  • In order to enhance the photovoltaic property of the CdS/CdSe co-sensitized quantum dot sensitized solar cells (QDSSCs), the surface of nanoporous $TiO_2$ photoanode was modified by ultrathin $Al_2O_3$ layer before the deposition of quantum dots (QDs). The $Al_2O_3$ layer, dip-coated by 0.10 M Al precursor solution, exhibited the optimized performance in blocking the back-reaction of the photo-injected electrons from $TiO_2$ conduction band (CB) to polysulfide electrolyte. Transient photocurrent spectra revealed that the electron lifetime (${\tau}_e$) increased significantly by introducing the ultrathin $Al_2O_3$ layer on $TiO_2$ surface, whereas the electron diffusion coefficient ($D_e$) was not varied. As a result, the $V_{oc}$ increased from 0.487 to 0.545 V, without appreciable change in short circuit current ($J_{sc}$), thus inducing the enhancement of photovoltaic conversion efficiency (${\eta}$) from 3.01% to 3.38%.

A Study on Improvement of a-Si:H TFT Operating Speed

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.42-44
    • /
    • 2007
  • The a-Si:H TFTs decreasing parasitic capacitance of source-drain is fabricated on glass. The structure of a-Si:H TFTs is inverted staggered. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr) $1500{\AA}$ under coming 7059 glass substrate. We have fabricated a-SiN:H, conductor, etch-stopper and photoresistor on gate electrode in sequence, respectively. The thickness of these, thin films is formed with a-SiN:H ($2000{\mu}m$), a-Si:H($2000{\mu}m$) and $n^+a-Si:H$ ($500{\mu}m$). We have deposited $n^+a-Si:H$, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-stopper pattern. The NPR layer by inverting pattern of upper gate electrode is patterned and the $n^+a-Si:H$ layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFTs decreasing parasitic capacitance of source-drain show drain current of $8{\mu}A$ at 20 gate voltages, $I_{on}/I_{off}$ ratio of ${\sim}10^8$ and $V_{th}$ of 4 volts.

Photo Stimulus Displacement Properties of Nano structure Organic Ultra Thin Films (나노구조 유기초박막의 광자격 변위특성)

  • Song, Jin-Won;Cho, Su-Young;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.209-211
    • /
    • 2004
  • In the Langmuir-Boldgett(LB) technique, a monolayer on the water surface is transferred on to a substrate, which is raised and dipped through the surface, and one can obtain multilayers in which constituent molecules periodically are arranged in layer. The LB technique has attracted considerable interest in the fabrication of electrical and electronic device, e.g.. Many researchers have investigated the electrical properties of monolayer and multiplayer films. Dendrimers represent a new class of synthetic macromolecules sharacterized by a regularly branched treelike structure. Multiple branching yields a large number of chain ends, which distinguishes dendrimers from conventional starlike polymers and microgels. Azobenzene dendrimer is one of the dendritic macromolecules that includes the azo-group which exhibits a photochromic character. Due to the presence of the charge transfer part, the azo-group, and having a rod-shaped structure, these compounds are expected to have the potential interest in electronics and ptoelectronics, especially in nonlinear optics. In the present paper, we give a pressure stimulation into organic thin films and detect the induced displacement current.

  • PDF

A Study on the Scribing of FTO using Pulsed Nd:YAG Laser (펄스형 Nd:YAG 레이저를 이용한 FTO 식각에 대한 연구)

  • Kim, Hee-Je;Park, Sung-Joon;Son, Min-Kyu;Lee, Dong-Kil;Lee, Kyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1407-1411
    • /
    • 2008
  • In material processing, a laser system with optimal laser parameters has been considered to be significant. Especially, the laser scribing technology is thought to be very important for fabricating DSSC(Dye sensitized solar eel!) modules with good quality. Moreover, the $TEM_{00}$ mode laser beam is the most dominant factor to decide the IPCE(Incident photon to current conversion efficiency) characteristics. In order to get the $TEM_{00}$ mode, a pin-hole is inserted within a simple pulsed Nd:YAG laser resonator. And the spatial field distribution is measured by using three size pin-hole diameters of 2.0, 6.0mm respectively. At that moment, each case has the same laser beam energy by adjusting the discharge voltage and pps(pulse per second). From those results, it is known that the pin-hole size of 2.0mm has the perfect $TEM_{00}$ mode. In addition, at the charging voltage of 1000V, 10pps and the feeding speed of 1.11mm/sec, the SEM photo of FTO(Fluorine-doped tin oxide) thin film layers shows the best scribing trace.

A study on the real time sensing of optical current sensor for GIS (GIS용 광전류센서의 실시간 센서링 연구)

  • Kim, Young-Min;Jee, Seung-Wook;Lee, Kwang-Sik;Kim, Min-Soo;Kim, Jung-Bae;Park, Won-Zoo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.422-425
    • /
    • 2006
  • 본 연구는 도체주변에 감겨진 광섬유 코일에 따라 선형편광축이 자기장에 의해 회전하는 Faraday Effect를 이용한 GIS(Gas Insulated Switchgear,이하 GIS) 용 광 전류센서의 구성과 DAQ(Data Acquisition,이하 DAQ)보드를 장착한 PC를 이용하여 실시간 데이터 취득, 분석 그리고 저장을 동시에 수행하였다 광원은 1310[nm]의 레이저 다이오드를 이용하였다. 센서부는 GIS에 맞게 원형으로 제작하였고 $9/125[{\mu}m]$규격 단일모드의 일반 통신용 광섬유를 지름 31[cm]의 센서부 코어에 20[회] 감아 설치하였다. PC기반의 실시간 데이터 분석 프로그래밍은 NI사의 Labview를 이용하여 코딩하였으며 PD(Photo Diode,이하 PD)의 전기적인 신호는 터미널 블록을 거쳐 NI사의 16bit DAQ M시리즈를 이용하여 수집되어진다. 직접 코딩한 프로그램을 이용하여 $700A\sim1400A$ 측정한 출력값 선형적인 증가추세를 보여주었다. 또한 OCS(Oscilloscope,이하 OCS)를 이용한 측정시스템과의 출력신호 및 정밀도를 비교 검토하였다. 그리고 Labview에서 지원하는 Web Tool기능을 이용하여 Web기반의 원거리 측정에서도 안정된 출력을 보여주었다.

  • PDF

Study on High Efficiency Boosting-up Circuit for Renewable Energy Application (신재생에너지용 연계형 인버터의 고효율 승압에 관한 연구)

  • Jung, Tae-Uk;Kim, Ju-Yong;Choi, Se-Kwon;Cho, Jun-Seok;Kho, Hee-Seok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.336-339
    • /
    • 2009
  • In this paper, such as battery power or solar energy and fuel cells generated from Renewable energy sources, high voltage to low voltage DC-DC Converter for converting the design of the study. System consists of low voltage ($24{\sim}28$ [VDC]) and Boosts the voltage (270 [VDC]) for a 3 [kW] DC-DC converter and control circuit is configured as, Power switch the ST Tomson's Automotive low voltage high current MOSFET switches STE250NS10S (temperature 250A) was applied to the two parallel. Also, Controller's processor used ATMEGA128, and Gate Drive applies and composed Photo Coupler TLP250. development. Input voltage (24V) and output voltage (270V) for Conversion in the H-bridge converter topology of the circuit output side power and voltage to control the implementation of the Phase shift angle control applied. And, 3kW of power to pass appropriate specification of the secondary side as interpreted by the high frequency transformer, and the experimental production and analysis of the experiment

  • PDF

Analyses of the Output Characteristics and the Internal Impedance of Dye-sensitized Solar Cell According to the Fabrication of the Blocking Layer (Blocking layer 제작에 따른 염료감응형 태양전지 출력특성 및 내부 임피던스 분석)

  • Kim, Jin-Kyoung;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Prabarkar, Prabarkar;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.85-88
    • /
    • 2012
  • DSCs are based on a dye-adsorbed porous $TiO_2$ layer as a photo electrode [1]. Under the illumination, dye molecules are excited and electrons are produced. The injected electrons in the conduction band of $TiO_2$ may recombine with the electrolyte. To obtain high performance DSCs, it is essential to retard the recombination. The charge recombination can be reduced by forming core-shell structure. In this work, we investigated the core-shell structure with $Al_2O_3$ and MgO coating layer on the porous $TiO_2$ layer. We confirmed the photovoltaic properties by I-V characteristics. The current and the efficiency was improved. In addition to, Through decrease in the width of EIS arc, which is the sum of the interfacial charge transfer resistances of both electrodes, we can be indicated that the block effect.

Design and Application of a Photovoltaic Array Simulator with Partial Shading Capability

  • Beser, Ersoy
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1259-1269
    • /
    • 2019
  • PV system performance is dependent on different irradiations and temperature values in addition to the capability of the employed PV inverter / maximum power point tracker (MPPT) circuit or algorithm. Therefore, it would be appropriate to use a PV simulator capable of producing identical repeatable conditions regardless of the weather to evaluate the performance of inverter / MPPT circuits and algorithms. In accordance with this purpose, a photovoltaic (PV) array simulator is presented in this paper. The simulator is designed to generate current-voltage (I-V) and power-voltage (P-V) curves of a PV panel. Series connected cascaded modules constitute the basic part of the simulator. This feature also allows for the modeling of PV arrays since the number of modules can be increased and high voltage values can be reached with the simulator. In addition, the curves obtained at the simulator output become similar to the actual curves of sample PV panels with an increase in the number of modules. In order to show the validity of the proposed simulator, it was simulated for various situations such as panels under full irradiance and partial shading conditions. After completing simulations, experiments were realized to support the simulation study. Both simulation and experimental results show that the proposed simulator will be very useful for researchers to carry out PV studies under laboratory conditions.