• Title/Summary/Keyword: photo catalytic

Search Result 91, Processing Time 0.028 seconds

A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode (상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Hong, Ji-Tae;Chae, Won-Yong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders (10 wt%, 20 wt%Li-TiO2 복합분말의 합성과 광촉매 활성평가)

  • Kim, Hyeong-Chul;Han, Jae-Kil
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2016
  • 10 wt.% and 20 wt.%$Li-TiO_2$ composite powders are synthesized by a sol-gel method using titanium isopropoxide and $Li_2CO_3$ as precursors. The as-received amorphous 10 wt.%$Li-TiO_2$ composite powders crystallize into the anatase-type crystal structure upon calcination at $450^{\circ}C$, which then changes to the rutile phase at $750^{\circ}C$. The asreceived 20 wt%$Li-TiO_2$ composite powders, on the other hand, crystallize into the anatase-type structure. As the calcination temperature increases, the anatase $TiO_2$ phase gets transformed to the $LiTiO_2$ phase. The peaks for the samples obtained after calcination at $900^{\circ}C$ mainly exhibit the $LiTiO_2$ and $Li_2TiO_3$ phases. For a comparison of the photocatalytic activity, 10 wt.% and 20 wt.% $Li-TiO_2$ composite powders calcined at $450^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$ are used. The 20 wt.%$Li-TiO_2$ composite powders calcined at $600^{\circ}C$ show excellent efficiency for the removal of methylorange.

Making Hygiene Paper by Surface Modification Method of the Functional Particle (기능성 미립자의 표면개질방법에 의한 위생지 제조)

  • Cho, Jun-Hyung;Kim, Yeon-Oh;Kim, Won-Duck
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • In order to give pulp surfaces anti-bacterial functionality and photo-catalytic deodorant ability, functional pulps was made using a surface modification method with Ag nano-colloidal solution and $TiO_2$ filler. Hygiene paper was made with the specially modified pulp, and anti-bacterial and deodorant tests were carried out. The Ag nano-colloidal solution was coated on the surface of the pulp using the high pressurized gas phase squirt through the spray nozzle mounted on the hybridization system. The surface modified functional pulp was hybridized with the optimum ratio of $TiO_2$(fine particle) to pulp(core particle) under the condition of $6,000{\sim}10,000$ rpm for $3{\sim}7$ minutes in the system. The anti-bacterial functionality of the hygiene paper was confirmed by the halo test in which the formation of the clear zone around the hygiene paper sample was observed. The inhibition growth test using MIC bioscreen C showed the inhibition growth effect of the bacteria as the reaction time was increased. The photo-catalytic effect measurement of the $TiO_2$ for 4 hours of the reaction showed $50{\sim}60%$ of decomposition rate, reaching over 60% for 5 hours of the reaction.

Super Hydrophilic Properties of SiO2-TiO2 Thin Film Prepared by Sol-Gel Method (졸-겔법에 의한 SiO2-TiO2 박막의 초친수성)

  • Park, Min-Jung;Lee, Kyoung-Seok;Kang, Jong-Bong;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.125-131
    • /
    • 2007
  • [ $TiO_{2}-solution$ ] was aaded in $SiO_{2}-solution$ by various composition. $SiO_{2}-TiO_{2}$ thin films were obtained by the dip-coating method on the $SiO_{2}$ glass substrates, and then heat-treated at various temperature. Nano-size $TiO_{2}$ particles dispersed $SiO_{2}-TiO_{2}$ films showed absorption peak by quantum size effect at short wavelength region $350{\sim}400nm$, which made them good candidates for non-linear optical materials and photo-catalytic materials. The thickness of $SiO_{2}-TiO_{2}$ films were $300{\sim}430nm$. The contact angle of $SiO_{2}-TiO_{2}$ films for water was $5.3{\sim}47.9^{\circ}$, and therefore it is clear that $SiO_{2}-TiO_{2}$ films have super hydrophilic properties and the self-cleaning effects.

Nelumbo nucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation

  • Supraja, N.;Avinash, B.;Prasad, T.N.V.K.V.
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.373-392
    • /
    • 2017
  • Silver nanoparticles (AgNPs) were successfully synthesized through a simple green route using the Nelumbo nucifera leaf, stem and flower extracts. These nanoparticles showed characteristic UV-Vis absorption peaks between 410-450 nm which arises due to the plasmon resonance of silver nanoparticles. The Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of amides and which acted as the stabilizing agent. X-ray diffraction spectrum of the nanoparticles confirmed the Face centered cubic (FCC) structure of the formed AgNPs. Dynamic light scattering technique was used to measure hydrodynamic diameter (68.6 nm to 88.1 nm) and zeta potential (-55.4 mV, -57.9 mV and 98.9 mV) of prepared AgNPs. The scanning electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodispersed silver nanoparticles (1-100 nm). The antimicrobial activity of prepared AgNPs was evaluated against fungi, Gram-positive and Gram-negative bacteria using disc diffusion method. Anti-corrosion studies were carried out using coupon method (mild steel and iron) and dye degradation studies were carried out by assessing photo-catalytic activity of Nelumbo nucifera extracts mediated AgNPs.

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Oxidation of Cu(II)-EDTA by TiO2 Photo-Catalysis(I) - The Effects of TiO2 Loading & Initial pH of Solution - (TiO2 광-촉매 반응에 의한 Cu(II)-EDTA의 산화(I) - TiO2 량과 pH의 영향 -)

  • Chung, Hung-Ho;Park, Eun-Hee;Rho, Jae-Seong;Sung, Ki-Woung;Cho, Young-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.154-159
    • /
    • 1999
  • EDTA (ethylenediaminetetraacetic acid), a chelating agent is most widely used in industrial applications, especially for cleaning of metals in water, frequently prohibits metal removal from water in conventional water treatment technologies. It could be easier to remove aqueous metal ions by the breakdown of DETA complexed bonds first. This study investigated the availability of $TiO_2$ photo-catalysis for the aqueous phase oxidation of Cu(II)-EDTA, under an aerobic condition at $20^{\circ}C$ with $TiO_2$ (Degussa P-25) and 1.79mM of Cu(II)-EDTA. When $TiO_2$ loading was 2.0 g/L, the photo-catalytic oxidation of Cu(II)-EDTA was maximal. The tendency of EDTA adsorption onto the catalyst surface was affected by $TiO_2$ surface charge, and the oxidation rate of Cu(II)-EDTA by photo-catalysis was shown to be dependent upon the tendency of EDTA adsorption before photo-irradiation.

  • PDF

Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition (HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성)

  • Park, Seungil;Ji, Hyung Yong;Kim, MyeongJun;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Super Hydrophilic Properties of ZrO2 Thin Film Containing TiO2 Photo-Catalysis (광촉매 TiO2 함유 ZrO2 박막의 초친수성)

  • Jung, Ki-Uk;Lee, Tea-Gu;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • A $ZrO_2$ coating solution containing $ZrO_2$ photo-catalysis, which is transparent in visible light, was prepared by the hydrolysis of alkoxide, and thin films on the $SiO_2$ glass substrate were formed in a dipcoating method. These thin films were heat-treated at temperatures ranging from $250^{\circ}C-800^{\circ}C$ and their characteristics were subjected to thermal analysis, XRD, spectrometry, SEM, EDS, contact angle measurement, and AFM. Tetragonal $ZrO_2$ phase was found in the thin film heat treated at $450^{\circ}C$, and anatase $TiO_2$ phase was detected in the thin film heat-treated at $600^{\circ}C$ and above. The thickness of the films was approximately 300 nm, and the roughness was 0.66 nm. Thus, the film properties are excellent. The films are super hydrophilic with a contact angle of $4.0^{\circ}$; moreover, they have self-cleaning effect due to the photo catalytic property of anatase $TiO_2$.

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.