• Title/Summary/Keyword: phosphorus release

Search Result 214, Processing Time 0.026 seconds

Effects of organic/inorganic carbon source on the biological luxury-uptake of phosphorus by cyanobacteria Synechococcus sp. (남조류 Synechococcus sp.의 혐기-호기법에 의한 인 과잉섭취 효율에 미치는 유기/무기 탄소원의 영향)

  • Yu, Mi-Yeong;Kim, Yun-Ji;Choi, Yun-Jeong;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2020
  • Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.

Release Characteristics of Phosphorus in Nakdong Estuary Barrage (낙동강 하구호에서의 인의 용출특성)

  • YANG Jin-Woo;SONG Kyo-Ouk;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.192-197
    • /
    • 1990
  • The study of characteristics of phosphorus release in Nakdong Estuary Barrage was conducted in June and July, 1989. Batch type reactor was designed for evaluating of release flux. The fractional composition of organic phosphorus and inorganic phosphorus in sediment were $34.7\%,\;66.7\%$, respectively. Inorganic phosphorus was fractionated into three types; Adsorbed-P, Non Apatite Inorganic-P, Apatite-P. The major forms of inorganic phosphorus were Non Apatite Inorganic-P($61.1\%$) and apatite-P($30.0\%$). Release rates of phosphorus from sediment were $-4.4mg/m^2/d$ in aerobic condition, and $39.4mg/m^2/d$ in anaerobic condition. According to the result of this study, sediment plays an important role in Nakdong Estuary Barrage as an internal load source of phosphorus.

  • PDF

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

Effects of pH, Temperature, and Dissolved Oxygen on Phosphorus Release from Marine Sediment to Seawater (해양퇴적물 인 용출에 미치는 pH, 온도, 용존 산소 농도의 영향)

  • Cheon, Hyo-Chang;Nam, Se-Yong;Kim, Sang-Hyoun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Understanding the behavior of pollutants in the marine environment is essential for coping with the marine pollution problems such as eutrophication. In this study, the effects of environmental parameters on phosphorus release from marine sediment to sea water were investigated. The environmental parameters such as pH in the range of 7 to 9, temperature from 10 to 20C and dissolved oxygen levels (DO) renging 0.7 to 7.0mg/L were examined. Phosphorus release data were taken from batch tests excluding biotic effects, and analyzed using a first-order kinetic model. The effects of environmental parameters were quantified using a statistical methodology. High pH, high temperature, and low DO increased phosphorus release from the sediment to sea water. pH from 7 to 9, temperature from 10 to $20^{\circ}C$, or DO from 7.0 to 0.7 mg/L magnified the equilibrium phosphorus concentration up to 2~3 times.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Effects of Sediments on the Growth of Algae at Chusori Area in Daechung Reservoir (대청호 추소리 수역의 퇴적물이 조류 성장에 미치는 영향)

  • Oh, Kyoung-Hee;Kim, Yong-Jun;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.533-542
    • /
    • 2015
  • In order to investigate the effect of internal loading from sediment on algal blooming at Chusori area in Daechung Reservoir, the amount and contamination level of sediment and the release rate of total phosphorus were analyzed. The sedimentary layer was consisted with two layers, and the average depth of upper and lower ones were 0.35 and 1.44 m, respectively. The fraction of inorganic phosphorus in the sediment was higher than that of organic phosphorus, and the fractions of phosphorus which responsible for internal loading were very high as in the range of 72.7 and 80.2% of inorganic phosphorus. The C/N ratio of sediment taken with core sampler indicated the organic compounds are originated from settled algae from water body. The average release rate of total phosphorus from sediment was $6.74({\pm}0.50)mg/m^2/day$. These results indicated that the internal loading from sediment contributes the excessive algal growth at Churosi area, and the countermeasures to improve the quality of sediments are required to manage algal blooming in Daechung Reservoir.

A study on release characteristics and forms of phosphorus in sediments (퇴적물에서의 인의 용출특성과 존재형태에 관한 연구)

  • 김은호;김형석
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • This study was carried out to investigate release characteristics of phosphorus with DO, pH and temperature, to suppose its behaviour with time using mathematical model, and to under-stand its forms with pH. Released SRP was in inversely proportional to DO and it did few release in initial aerobic conditions, but it did actively with decreasing DO concentration. Also, its release was increased with increasing pH and temperature. It was found that relation between time and released SRP concentration was zero order reaction. As compared with k values in various pH and temp., they was $k_{15}>k_{25}$ in pH 6 but was $k_{15} in pH 7 and 8. Considering forms of phosphorus with pH, Resdi.-P & NAI-P increased but Ads.-P & Apt.-P decreased with increasing pH.

Sand Capping for Controlling Phosphorus Release from Lake Sediments (호소 저니의 인 용출 제어를 위한 모래 캡핑)

  • Kim, Geonha;Jeong, Woohyeok;Choe, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.125-130
    • /
    • 2006
  • In this research, possibility of sand capping was experimentally evaluated to control phosphorus release from lake sediment into water body. Three acrylic columns without and with 40 and 80 mm of sand capping were prepared. Phosphorus concentrations of overlying water in these columns were measured. Performances of sand capping were evaluated for 0, 40, and 80 mm of capping thickness by measuring DO, ORP, TP, and $PO_4$-P. For the case without capping, the releasing rate of total phosphorus was higher and dissolved oxygen decreased faster, comparing with those of columns with capping. Total phosphorus concentrations in overlying water were inversely proportional to capping thickness, while phosphate concentration showed no significant differences between both cases. The experiment results suggested that sand capping is effective to retard total phosphorus release from sediment.

The Effect of CaO2 Application on the Change of Sedimentary Phosphorus Fraction and Water Quality (CaO2 적용에 따른 퇴적물의 P fraction 변화와 수질에 미치는 영향)

  • Kim, Beom-geun;Khirul, Md Akhte;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.511-520
    • /
    • 2019
  • This study was investigated to improve the phosphorus release and water quality by transformation of sedimentary P fraction for application of $CaO_2$. For the experiment, 0.5% (w/w) of $CaO_2$ was homogenized in the sediment and incubated with the control for 20 days. The analytical results showed that pH increased with $CaO_2$ and redox potential (ORP) was improved in the sediment of the reactor. The growth rate of chlorophyll-a was lower in the $CaO_2$ reactor and Dissolved Oxygen (DO) of overlying water maintained higher than that of the control. Total phosphorus (T-P) concentration in the overlying water increased from the initial concentration to 0.304mg/L in the control at 20 days. The reactor of $CaO_2$ was lowered by 29.3%. Ex-P, Fe-P and Ca-P in sediment P fraction were increased with the $CaO_2$. The formation of bound Fe-P and Ca-P in the sediments seemed to control the release of P by removing the Soluble Reactive Phosphorus (SRP) presented in the pore water. From the result, this indicated that the reduction of P release from the sediments seems to be effective in suppressing the eutrophication of P and improving the oxygen condition in the water quality with the application of $CaO_2$.

Distribution of Nutrients in Dae-Cheong Reservoir Sediment

  • Hwang Jong Yeon;Han Eui Jung;Kim Tae Kehn;Kim Shin Jo;Yu Soon Ju;Yoon Young Sam;Jung Yong Soon;Park Pan Wook
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.169-179
    • /
    • 1998
  • This paper was performed to estimate interrelations between humus level of sediments and nutrient release from sediments in Dae-cheong reservoir. For investigations, sediments were sampled in June and October, in 1997 at fish farms, embayment, and the main stream of Dae-cheong reservoir. Items for investigation are as follows; water content, weight loss on ignition(IG), porosities of sediments, contents of element such as hydrogen, nitrogen, carbon, and nutrient release rates. Water contents and porosities were measured to conjecture the physical trait and grain size trait. Weight loss on ignition was measured to determine the contents of organic substance. For determination of the humus level of sediments, carbon and nitrogen contents were measured by elemental analyzer. As a result of elemental analysis, C/N ratio was determined in the range of $3.0\~13.1$. From the elemental analysis, humus level of Dae-cheong reservoir sediment was estimated from mesohumic state to oligotrophic state. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentrations of interstitial water and overlying water were measured. By using the concentration difference between interstitial water and overlying water and using the Fick's diffusion law, the release rates of phosphorus and nitrogen from the sediment samples were calculated. Release rates of nutrients which directly influence to the water quality were $0.05\~8.63mgP/m^2day$ and $4.99\~36.56mgP/m^2day$. It was found that release rate was measured higher in the 1st sampling period than in the 2nd sampling period. For the determination of phosphorus content in sediment, TPs were measured in 807\~1542{\mu}g/g$ in the 1st samling period and $677\~5238{\mu}g/g$ in the End samling period. Phosphorus release rate and phosphorus content were not interrelated each other.

  • PDF