• Title/Summary/Keyword: phosphorus release

Search Result 214, Processing Time 0.027 seconds

The Effect of Substrates and Nitrate on Biological Phosphorus Release (생물학적 인 방출시 유기물 및 질산염에 대한 영향)

  • Min, Kyung-Kook;Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, effects of substrates and nitrate on biological phosphorus release in EBPR(enhanced biological phosphorus removal) process were examined using batch test apparatus at anaerobic conditions. The sludge used in this experiments was taken from SBR(sequencing batch reactor) treating swine wastewater at aeration period. Phosphorus release rates obtained with substrates of FSW(fermented swine wastewater), acetate, propionate, domestic wastewater and methanol were 6.19, 5.99, 1.52, 1.2 and $1.03mgP/gVSS{\cdot}hr$, respectively. Those observed with acetate and FSW were 4~5 times greater than those with propionate, methanol and domestic wastewater. Therefore phosphorus release rates were significantly affected by type of substrate added at anaerobic condition. Phosphorus release was greatly affected by concentration of nitrate in anoxic condition. Comparing to acetate, propionate and FSW, phosphorus release was observed after almost completely depletion of nitrate concentration with methanol and domestic wastewater added as substrate. In the cases supplied with acetate, propionate and FSW, phosphorus release rates were less influenced by a nitrate concentration than those with methanol and domestic wastewater.

  • PDF

Phosphorus Release from Waste Activated Sludge by Microwave Heating (마이크로웨이브를 이용한 잉여 슬러지 가온과 인산염 방출)

  • Ahn, Johwan;Yang, Hoiweon;Kim, Jangho;Min, Sungjae;Kim, Junghwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.387-393
    • /
    • 2017
  • A chemical batch tests were conducted to evaluate if microwave heating enhances phosphorous release from waste activated sludge (WAS) at pH 2.5, 5, 7, 9 and 11. Polyphosphate-accumulating organisms have a unique physiological feature, which releases intracellular polyphosphate granules when they are exposed under high temperature environments. Microwave irradiation was found to encourage large amount of phosphorus release from WAS, depending on pH and temperature conditions. Most of phosphorus was released below $59^{\circ}C$ within 30 min. A marked increase in phosphorus release was observed under alkaline or acidic conditions. However, based on control tests for phosphorus release under different pH conditions without microwave heating, the largest amount of phosphorus released by microwave irradiation was found at pH 7, followed by 5, 9, 11. On the other hand, crystallization was conducted to obtain magnesium ammonium phosphate (MAP) from phosphate released by microwave heating at pH 7. X-ray diffraction analysis confirmed that the recovered crystalline materials were MAP. MAP is an environmentally friendly fertilizer, which slowly releases ammonia and phosphorus in response to the demand of plant root. Thus, the recovered MAP as a phosphate fertilizer is fully expected to play a important role in the reduction of agricultural non-point pollution.

Analysis on the Reduction of Phosphorus Release in River and Lake Sediments through Application of Capping Technology (Capping 기술을 이용한 하천 및 호소 퇴적토의 인 용출 저감 효과 분석)

  • Kim, Seog-Ku;Yun, Sang-Leen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.781-790
    • /
    • 2014
  • Contaminants such as organic matters, nutrients and toxic chemicals in rivers and lakes with a weak flow rate are first removed from the water and accumulated in the sediments. Subsequently, they are released into the water column again, posing direct/indirect adverse effects on the water quality and aquatic ecosystems. In particular, phosphorus is known to accelerate the eutrophication phenomenon when it is released into the water column via physical disturbance and biological/chemical actions as one of important materials that determine the primary production of aquatic ecosystems and an element that is stored mainly in the sediments in the process of material circulation in the body of water. In this study, the effect on reducing phosphorus release in sediments was analyzed by applying different capping materials to lake water, where the effect of aquatic microorganisms is taken into account, and to distilled water, where the effect of microorganisms is excluded. The experimental results showed that capping with chemical materials such as Fe-gypsum and $SiO_2$-gypsum further reduced the phosphorus release by at least 40% compared to the control case. Composite materials like granule gypsum+Sand showed over 50% phosphorus release reduction effect. Therefore, it is determined that capping with chemical materials such as granule-gypsum and eco-friendly materials such as sand is effective in reducing phosphorus release. The changes in phosphorus properties in the sediments before and after capping treatment showed that gypsum input helped to change the phosphorus that is present in lake sediments into apatite-P, a stable form that makes phosphorus release difficult. Based on the above results, it is expected that the application of capping technology will contribute to improving the efficiency of reducing phosphorus release that occurs in river and lake sediments.

A Study on the Influence of Release Characteristics of Phosphorus Fraction in the Sediment (연안 퇴적물에서 인의 존재형태가 용출 특성에 미치는 영향에 대한 연구)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.228-236
    • /
    • 2019
  • This study investigated the effect of the sediment phosphorus fraction sampled from the southern coast of Korea on the release characteristics of sediments by environmental changes of water quality. We conducted the release experiment in the laboratory for 20 days and measured the phosphorus fraction properties, the environmental factors of water quality, and the release rate of total phosphorus. The results showed a decrease in dissolved oxygen by the growth of microorganisms in the water layer, leading to the anaerobic condition in which the redox potential of the sediments decreased. As such, the decreasing variability of phosphates bonded to iron oxide in the sediment phosphorus was higher after 20 days of the release experiment than the first day. It means that the metal ions and the separated inorganic phosphorus transfer into the water when the iron oxide is reduced. The separated inorganic phosphorus is easily absorbed by the plankton. The analysis of total phosphorus in the water layer showed that it continuously increased to up to 0.304 mg/L for 20 days, and the release rate had a high correlation with the decrease of dissolved oxygen after 5 days of culture. Therefore, it is necessary to pay attention to the characteristics of iron bonded to phosphorus in the phosphorus fraction and dissolved oxygen to manage the eutrophication of the system.

Recovery of phosphorus from waste activated sludge by microwave heating and MAP crystallization (잉여 슬러지의 마이크로웨이브 가온과 MAP 결정화를 이용한 인산염 회수)

  • Ahn, Johwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Phosphorus is a vital resource for sustaining agriculture and nutrition, but a limited non-renewable resource. Thus, the recovery of phosphorus from waste activated sludge(WAS) was attempted by microwave heating and magnesium ammonium phosphorus(MAP) crystallization. Polyphosphate-accumulating organisms(PAOs) in WAS release phosphate from the cell when they are exposed to high temperature environments. Microwave heating caused phosphorus and ammonia to release from WAS. The amount was increased with increasing temperature, showing that 88.5% of polyphosphate present in the cells were released in the form of phosphate at $80^{\circ}C$. A similar result was also observed in the release of ammonia. On the other hand, both phosphorus and ammonia were crystallized with magnesium, and then was harvested as MAP. Phosphorus recovery rate reached almost 97.8%, but the ammonia was about 13.4%. These results cleary indicate that phosphorus could be recovered from WAS using a physiological trait of PAOs. Heavy metal analyses also show that the MAP crystal is useful and safe as a phosphorus fertilizer.

Removal of Phosphorus in Aerobic Fixed Biofilm Reactor (호기성 고정생물막 반응조에서 인의 제거)

  • Rim, Jay-Myoung;Han, Dong-Joon;Woo, Young-Gug
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.5-11
    • /
    • 1996
  • While the enhanced biological phosphorus removal(EBPR), in anaerobic/aerobic condition, was known to remove phosphorus by means of metabolism of poly-P microorganisms, the phosphorus removed could be released in the form of ortho-P in the aerobic fixed biofilm reactor. This study was initiated to investigate the cause of ortho-P release in the aerobic fixed biofilm reactor. The resutls indicated that the phosphorus release was caused by autooxidation. The synthesis and release of phosphrous were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was $0.023mgP_{syn}/mgCOD_{rem}$. The phosprous contents of the microorganism were 4.3 ~ 6.0% on a dry weight basis.

  • PDF

Impoundments Increase Potential for Phosphorus Retention and Remobilization in an Urban Stream

  • Vo, Nguyen Xuan Que;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.175-184
    • /
    • 2014
  • Weirs are conventional structures that control water level and velocity in streams to facilitate water resource management. Despite many weirs built in streams, there is little information how weirs change hydrology regime and how that translates to sediment and phosphorus (P) responses. This study evaluated the influence of weirs on P retention and mobilization in an urban tributary of the Han River in Korea. Total P concentrations in sediments upstream of weirs were higher than the downstream site, mainly due to the increase of potentially available fractions (labile P and aluminum- and iron-bound P) (p < 0.05). Equilibrium phosphorus concentrations ($EPC_o$) were lower than soluble reactive phosphorus (SRP) concentrations of stream waters, but there was an increasing trend of sediment $EPC_o$ upstream of weirs compared to the downstream site (p < 0.001) indicating a greater potential for P release upstream of weirs. Sediment core incubation showed that SRP release rates upstream of weirs were higher than the downstream site under anoxic conditions of the water column (p < 0.01), but not under oxic conditions. SRP release rates under anoxic conditions were greater than that measured under oxic conditions. Un-neutral pH and increased temperature could also enhance SRP release rates upstream of weirs. We conclude that weirs can increase P retention within stream sediments and potentially promote significant P releases into waters, which in turn cause eutrophication.

The Relationship of Specific Phosphorus Release / Uptake Rate and Specific Oxygen Uptake Rate considering the Sludge Retention Time in the A/O Process (A/O공정에서 슬러지체류시간에 따른 인 방출 및 섭취속도와 비산소소비율과의 상관관계)

  • Choi, Jung Soo;Lee, Kwang Hyun;Joo, Hyun Jong;Kim, Sung Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.468-473
    • /
    • 2010
  • The purpose of this study is to derive the correlation between the Specific Phosphorus Release Rate (SPRR), Specific Phosphorus Uptake Rate (SPUR) and Specific Oxygen Uptake Rate (SOUR) at various Sludge Retention Time (SRT) condition in the A/O process. The laboratory scale reactor was operated on various SRT (10 day, 20 day, 30 day, 40 day). In this study, the SPRR, SPUR and SOUR tended to decrease with the SRT increase. Empirical equations was be obtained $y=4.54E-006x^2+0.0007x-0.0315$, $R^2=0.925$ (SOUR vs. SPRR) and $y=3.22E-006x^2+0.0004x-0.0173$, $R^2=0.928$ (SOUR vs. SPUR) from the relationship between SRT, SPRR and SPUR and SOUR. Therefore, the anaerobic tank design based on the research result such as SPRR, SPUR of a phosphorus design and SOUR would be possible.

Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process (연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향)

  • Jeon, Seok-Jun;Kim, Han-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.

Relationship between Phosphorus Release and Intracellular Storage Polymer Synthesis by Phosphorus Accumulating Organisms (인축적 미생물의 인방출과 세포내 저장물질 합성관계)

  • Shin, Eung-Bai;Kim, Mee-Kyung;Hong, Jun-Hyeok;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.692-697
    • /
    • 2004
  • Biological phosphorus removal is characterized by complex interactions between different intracellular components of energy as PHA. Therefore, fundamental understanding of the behavior of the intracellular components and their influence on the removal of phosphorus is essential before control strategies to stabilize the proper process. The purpose of this study is to investigate relationship between release of phosphorus and synthesis of intracellular storage polymer. Mass of stored intracellular storage polymer was 21.2 mg PHA/L, 28.8 mg PHA/g MLSS. And phosphorus release/intracellular storage polymer synthesis rate was 1.8545 mg stored polymer/mg Phosphate. In the aerobic phase, mass of PAOs synthesis is 49.37 mg PAOs/L. And PAOs fraction was 6.7-6.9%. Thus intracellular storage polymer synthesis by PAOs is calculated as 493mg PHA/g PAOs.