• Title/Summary/Keyword: phosphorescent OLEDs

Search Result 94, Processing Time 0.019 seconds

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF

Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4321-4326
    • /
    • 2011
  • A new series of heteroleptic cyclometalated iridium(III) complexes has been synthesized and characterized by absorption, emission and cyclic voltammetry studies: $(pqx)_2Ir(acac)$ (1), $(dmpqx)_2Ir(acac)$ (2) and $(dfpqx)_2Ir(acac)$ (3) where pqx=2-phenylquinoxalinate, dmpqx=2-(2,4-dimethoxyphenyl)quinoxalinate, dfpqx=2-(2,4-difluorophenyl) quinoxalinate and acac=acetylacetonate anion. The reaction of excess acetylacetone with ${\mu}$-chloride-bridged dimeric iridium complex, $[(C\^N)_2Ir({\mu}-Cl)]_2$, gives a complex 1 and an unusual hydridoiridium(III) complex, $(pqx)IrH(acac)_2$ (4). The complex 1, 2 and 3 show their emissions in an orangered region (${\lambda}_{PL,max}$ = 583-616 nm), and the emission maxima can be tuned by the change of substituent at phenyl ring of 2-phenylquinoxaline ligand. The phosphorescent line shape indicates that the emissions originate predominantly from $^3MLCT$ states with little admixture of ligand-based $^3({\pi}-{\pi}^*)$ excited states. The structures of complex 3 and 4 are additionally characterized by a single crystal X-ray diffraction method. The complex 3 shows a distorted octahedral geometry around iridium(III) metal ion. A strong trans influence of the phenyl ring is examined. In complex 4, there are two discrete molecules which are mirror images each other at the ratio of 1:1 in an unit cell. We propose that the phosphorescent complex 1, 2 and 3 are possible candidates for the phosphors in OLEDs applications.

Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes

  • Oh, Sihyun;Jung, Narae;Lee, Jongwon;Kim, Jinho;Park, Ki-Min;Kang, Youngjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3590-3594
    • /
    • 2014
  • Blue phosphorescent $(dfpypy)_2Ir(mppy)$, where dfpypy = 2',6'-difluoro-2,3'-bipyridine and mppy = 5-methyl-2-phenylpyridine, has been synthesized by newly developed effective method and its solid state structure and photoluminescent properties are investigated. The glass-transition and decomposition temperature of the compound appear at $160^{\circ}C$ and $360^{\circ}C$, respectively. In a crystal packing structure, there are two kinds of intermolecular interactions such as hydrogen bonding ($C-H{\cdots}F$) and edge-to-face $C-H{\cdots}{\pi}(py)$ interaction. This compound emits bright blue phosphorescence with ${\lambda}_{max}=472nm$ and quantum efficiencies of 0.23 and 0.32 in fluid and the solid state. The emission band of the compound is red-shifted by 40 nm relative to homoleptic congener, $Ir(dfpypy)_3$. The ancillary ligand in $(dfpypy)_2Ir(mppy)$ has been found to significantly destabilize HOMO energy, compared to $Ir(dfpypy)_3$, $(dfpypy)_2Ir(acac)$ and $(dfpypy)_2Ir(dpm)$, without significantly changing LUMO energy.

Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kim, Dae-Young;Hwang, In-Hye;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2013
  • A series of highly efficient red phosphorescent heteroleptic iridium(III) complexes 1-6 containing two cyclometalating 2-(2,4-substitued phenyl)quinoxaline ligands and one chromophoric ancillary ligand were synthesized: (pqx)$_2Ir$(mprz) (1), (dmpqx)$_2Ir$(mprz) (2), (dfpqx)$_2Ir$(mprz) (3), (pqx)$_2Ir$(prz) (4), (dmpqx)$_2Ir$(prz) (5), (dfpqx)$_2Ir$(prz) (6), where pqx = 2-phenylquinoxaline, dfpqx = 2-(2,4-diflourophenyl)quinoxaline, dmpqx = 2-(2,4-dimethoxyphenyl)quinoxaline, prz = 2-pyrazinecarboxylate and mprz = 5-methyl-2-pyrazinecarboxylate. The absorption, emission, electrochemical and thermal properties of the complexes were evaluated for potential applications to organic light-emitting diodes (OLEDs). The structure of complex 2 was also determined by single-crystal X-ray diffraction analysis. Complex 2 exhibited distorted octahedral geometry around the iridium metal ion, for which 2-(2,4-dimethoxyphenyl)quinoxaline N atoms and C atoms of orthometalated phenyl groups are located at the mutual trans and cis-positions, respectively. The emission spectra of the complexes are governed largely by the nature of the cyclometalating ligand, and the phosphorescent peak wavelengths can be tuned from 588 to 630 nm with high quantum efficiencies of 0.64 to 0.86. Cyclic voltammetry revealed irreversible metal-centered oxidation with potentials in the range of 1.16 to 1.89 V as well as two quasi-reversible reduction waves with potentials ranging from -0.94 to -1.54 V due to the sequential addition of two electrons to the more electron-accepting heterocyclic portion of two distinctive cyclometalated C^N ligands.

Slot-Die Coating of PEDOT : PSS for Large-Area OLED Lighting Sources (대면적 OLED 면광원을 위한 PEDOT : PSS 슬롯다이 코팅)

  • Choi, Kwang-Jun;Lee, Jin-Young;Jeon, Kyung-Jun;Yoo, Su-Ho;Park, Jong-Woon;Seo, Hwa-Il;Seo, Yu Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2015
  • We have fabricated poly(3,4-ethylenedioxythiophene) : poly(4-styrenesulfonate) (PEDOT : PSS) thin films using a slotdie coater for the applications of OLED lightings. It is demonstrated that the properties of slot-die coated PEDOT : PSS films are comparable with those of spin-coated ones. Namely, the average and peak-to-peak roughness of the slot-die coated 50-nm-thick PEDOT : PSS film are measured to be as low as 0.247 nm and 1.3 nm, respectively. Moreover, we have obtained excellent thickness uniformity (~1.91%). With the slot-die coated PEDOT : PSS films, we have fabricated green phosphorescent OLED devices. For comparison, we have also fabricated OLED devices with spin-coated PEDOT : PSS films. Both show almost no discrepancy in device performance. The power efficiency (25.4 lm/W) and emission uniformity (77%) of OLEDs with slot-die coated PEDOT : PSS films are shown to be slightly lower than those (27.3 lm/W, 80%) of OLEDs with spin-coated PEDOT : PSS films at the luminance of 1,000nit, increasing the feasibility of using a slot-die coating process for the fabrication of large-area OLED lighting sources at a competitive price.

Fabrication and Characterization of High Efficiency CBP:Ir(ppy)_3$-PhOLEDs (고효율 $CBP:Ir(ppy)_3$-PhOLEDs의 제작과 특성 연구)

  • Jang, Ji-Geun;Shin, Sang-Baie;Shin, Hyun-Kwan;Ahn, Jong-Myoung;Chang, Ho-Jung;Ryu, Sang-Ouk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • New devices with the structure of ITO/2-TNATA/NPB/TCTA/CBP:$7%Ir(ppy)_3$/BCP/SFC-137/LiF/Al were designed and fabricated to develop high efficiency green phosphorescent organic light emitting diodes and their electroluminescence properties were evaluated. Among the devices with different thicknesses of CBP in a range of $150{\AA}{\sim}350{\AA}$, the best luminance was obtained in the device with $300{\AA}$-thick CBP host. Nearly saturated current efficiencies indicates that the maximum efficiency value can be obtained with CBP thicknesses of $300{\AA}{\sim}350{\AA}$. The current density, luminance, and current efficiency of the PhOLED(phosphorescent organic light emitting diode) with $CBP(300{\AA}):7%Ir(ppy)_3-emissive$ layer at an applied voltage of 10V were $40mA/cm^2,\;10000cd/m^2$, and 25 cd/A, respectively. The maximum current efficiency was 40.5cd/A under the luminance of $160cd/m^2$. The peak wavelength and FWHM(full width at half maximum) in the electroluminescence spectral were 512nm and 60nm, respectively. The color coordinate was (0.28, 0.63) on the CIE (Commission Internationale de I'Eclairage) chart.

  • PDF

The Characteristics of Organic Light-emitting Diodes With a New Blue Phosphorescent Material (새로운 청색의 인광 물질을 어용한 유기 발광 소자의 전기적 특성 및 수명에 대한 연구)

  • Kim, Y.K.;Park, J.H.;Seo, J.H.;Seo, J.H.;Han, J.W.;Im, C.;Han, S.H.;Lee, S.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.74-78
    • /
    • 2007
  • A new blue phosphorescent material for organic light emitting diodes (OLEDs), Iridium(III)bis[2-(4-fIuoro-3-benzonitrile)-pyridinato-N,C2'] picolinate (Firpic-CN), was synthesized and studied. We compared characteristics of Firpic-CN and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) which has been used for blue dopant materials frequently. The devices structure were indium tin oxide (ITO) (1000 ${\AA}$)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (500 ${\AA}$)/4,4'-N,N'-dicarbazole-biphyenyl (CBP) : FIrpic and FIrpic-CN (X wt%)/4,7-diphenyl-1,10-phenanthroline (BPhen) (300 ${\AA}$)/lithum quinolate (Liq) (20 ${\AA}$)/Al (1000 ${\AA}$). 15 wt% FIrpic-CN doped device exhibits a luminance of $1450\;cd/m^2$ at 12.4 V, luminous efficiency of 1.31 cd/A at $3.58mA/cm^2$, and Commission Internationale d'Eclairage $(CIE_{x,y})$ coordinates of (0.15, 0.12) at 12 V which shows a very deep blue emission. We also measured lifetime of devices and was presented definite difference between devices of FIrpic and FIrpic-CN. Device with FIrpic-CN as a dopant presented lower longevity due to chemical effect of CN ligand.

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Emission Characteristics of White OLEDs with Various Hole Transport Layers (정공수송층에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Ju, Sung-Hoo;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.983-987
    • /
    • 2010
  • In order to investigate the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs) according to various hole transport layers (HTLs), PHWOLEDs composed of HTLs whose structure are NPB/TCTA, NPB/mCP and NPB/TCTA/mCP, two emissive layers (EMLs) which emit two-wavelengths of light (blue and red), and electron transport layer were fabricated. The applied voltage, power efficiency, and external quantum efficiency at a current density of $1 mA/cm^2$ for the fabricated PHWOLEDs were 7.5 V, 11.5 lm/W, and 15%, in case of NPB/mCP, 5 V, 14.8 lm/W, and 13.7%, in case of NPB/TCTA, and 5.5 V, 14.6 lm/W, and 15%, in case of NPB/TCTA/mCP in the hole transport layer, respectively. High emission efficiency can be obtained when the amount of hole injection from anode is balanced out by the amount of electron injection from the cathode to EML by using NPB/TCTA/mCP structured HTL.