• Title/Summary/Keyword: phosphor materials

Search Result 531, Processing Time 0.028 seconds

Effect of PVA Polymerization on Synthesis of YAG:Ce3+ Phosphor Powders Prepared by a Solid-liquid Hybrid Route (PVA 중합도가 고상-액상 혼합 방식에 의한 YAG:Ce3+ 형광체 분말 합성에 미치는 영향)

  • Kim, A-Reum;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.424-429
    • /
    • 2014
  • YAG:$Ce^{3+}$ phosphor powders were synthesized using $Al(OH)_3$ seeds by means of a PVA-polymer-solution route. Various types of PVA with different molecular weights (different polymerization) were used. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1500^{\circ}C$ in a mix of nitrogen and hydrogen gases. The final powders were characterized via XRD, SEM, PSA, PL, and PKG analyses. The phosphor properties and morphologies of the synthesized powders were dependent on the PVA type. As the molecular weight of the PVA was increased, the particle size gradually decreased with agglomeration, and the luminous intensity of the phosphor increased. However, the phosphor powder prepared from the PVA exhibiting very high molecular weight, showed a 531 nm (blue) shift from the 541 nm (yellow) wavelength of the YAG:$Ce^{3+}$ phosphor. Finally, the synthesized YAG:$Ce^{3+}$ phosphor powder prepared from the PVA with 89,000 - 98,000 molecular weight showed phosphor properties similar to those of a commercial phosphor powder, but without a post-treatment process.

Synthesis and luminescence properties of SrS:Eu red phosphors by solid state method

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.640-643
    • /
    • 2004
  • We have synthesized SrS:Eu red phosphor by solid state method and investigated to adopt a red phosphor for LEDs. The SrS:Eu phosphor shows broad emission band at 600nm region due to f-d energy transfer of $Eu^{2{\cdot}}$. Our results show that the SrS:Eu red phosphor exhibits the better luminescence efficiency than that of the industrially available product SrS:Eu phosphor.

  • PDF

Morphology and Photoluminescence Characteristics of Halophosphate Phosphor Particles by Spray Pyrolysis and Flame Spray Pyrolysis

  • Sohn, Jong-Rak;Kang, Yun-Chan;Park, Hee-Dong;Yoon, Soon-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • Flame spray pyrolysis was applied to improve the photoluminescence characteristics of blue-emitting $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles with high brightness for the application to LED phosphor. $Sr_5(PO_4)_3Cl:Eu^{2+}$ prepared from conventional spray pyrolysis had poor PL intensity than that of commercial products under long-wavelength ultraviolet(UV). $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by flame spray pyrolysis had PL intensity as same as that of commercial products under long-wavelength UV. Hollow morphology and porous structure of the particles prepared by the flame spray pyrolysis disappeared after posttreatment. Even though the $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by the flame spray pyrolysis had irregular shape, the particles had dense structure and clear surface property.

  • PDF

Synthesis of Phosphor for Light-Emitting Diodes by Sol-Gel Method (졸-겔법을 이용한 LED용 형광체의 합성)

  • Ahn Joong-In;Han Cheong-Hwa;Park Jung-Kyu;Kim Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.749-753
    • /
    • 2004
  • In this study, we attempt to synthesize the $Sr_{3}SiO_{5}:Eu$ yellow phosphor by sol-gel technique. Based on the blue emitting diodes as primary light source, white light emitting diodes have been manufactured using the $Sr_{3}SiO_{5}:Eu$ yellow phosphor as the luminescent material. Luminescent efficiency of yellow phosphor as well as that of blue LED is very important factor to enhance the luminescent efficiency of white LED. In order to improve the luminescent efficiency, we have synthesized the $Sr_{3}SiO_{5}:Eu$ phosphor by sol-gel technique. To research optimum condition of gelation reaction, the ratio of $H_{2}O$ to TEOS was fixed as 60:1. When the drying temperature was at $100^{\circ}C$, emission intensity was better than at $70^{\circ}C$. The critical $Eu^{2+}$ concentration was estimated to be about 0.05 mol and sintering temperature at $1300^{\circ}C$ was indicated best emission intensity.

Structural and Optical Properties of Yellow-Emitting CaGd2ZrSc(AlO4)3:Ce3+ Phosphor for Solid-State Lighting

  • Kim, Yoon Hwa;Kim, Bo Young;Viswanath, Noolu S.M.;Arunkumar, Paulraj;Im, Won Bin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.422-428
    • /
    • 2017
  • Single-phase yellow phosphor, $CaGd_{2-x}ZrSc(AlO_4)_3:xCe^{3+}$ ($CGZSA:Ce^{3+}$), possessing cubic symmetry with varied $Ce^{3+}$ concentrations, was synthesized using the solid-state reaction method. The samples were characterized using X-ray diffraction (XRD), excitation spectra, emission spectra, thermal quenching, and decay curves. The cubic phase of $CGZSA:Ce^{3+}$ phosphor was confirmed via XRD analysis. The photoluminescence spectra of $CGZSA:Ce^{3+}$ phosphor demonstrated that the phosphor could be excited at the wavelength of 440 nm; a broad yellow emission band was centered at 541 nm. These results indicate that the phosphors are adequately excited by blue light and have the potential to function as yellow-emitting phosphors for applications in white light-emitting diodes.

New Phosphor and Material Structures for Displays

  • Summers, Christopher J.;King, Jeffrey;Park, Woun-Jhang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.243-252
    • /
    • 2002
  • We propose a new concept: that of photonic crystal phosphors (PCPs) for display and phosphor related applications. It is well known that microcavities with dimensions comparable to the emitting wavelength strongly enhance light-matter interactions, resulting in a significant increase in spontaneous emission rate, which can be directly translated into enhancement in phosphor efficiency. In recent simulations we have demonstrated that when a microcavity is formed in a nano-phosphor structure, the luminescence band is modified, and can be made spectrally sharp and tunable by engineering the geometry/material properties of the cavity and the surrounding photonic crystal lattice. New phosphor material structures based on photonic crystals are proposed. Applications to thin film EL phosphors and particle phosphors are discussed. Additionally, economic methods of synthesizing and incorporating PCPs into current display applications are proposed.

  • PDF

Synthesis of the sulfide phosphors and white light generation based on InGaN chip

  • Kim, Kyung-Nam;Kim, Jae-Myung;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.679-682
    • /
    • 2004
  • $SrGa_2S_4$:Eu green phosphor and SrS:Eu red phosphor have been synthesized by co-precipitation method, respectively. Two sulfide phosphors were influenced by oxygen defect in host materials. Excitation spectra of these phosphors have high efficiency at the long wavelength region. And emission efficiency is increased under the excitation wavelength of 465nm. The combination of thiogallate green phosphor and sulfide red phosphor based on blue light InGaN chip has made it possible to emit white light.

  • PDF

Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method (다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성)

  • Park, Jumg-Min;Jung, Ha-Kyun;Park, Hee-Dong;Park, Yoon-Chang
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

Nano-sized Gd2O3:Eu Phosphor Prepared by Spray Pyrolysis (분무열분해 공정에 의해 합성되어진 나노 크기 Gd2O3:Eu형광체)

  • Kim, Eun-Joung;Kang, Yun-Chan;Park, Hee-Dong;Ryu, Seung-Kon
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.771-775
    • /
    • 2002
  • $Gd_2$$O_3$:Eu phosphor particles with nano-sized and non-aggregation characteristics were prepared by spray pyrolysis using the spray solution containing polymeric precursor and $Li_2$$CO_3$ flux material. Nano-sized $Gd_2$$O_3$:Eu phosphor particles had higher brightness than the commercial $Y_2$$O_3$:Eu phosphor particles. The $Gd_2$$O_3$:Eu phosphor particles had nano-size and non-aggregation characteristics after heat-treatment at $1000^{\circ}C$ when the addition amount of $Li_2$$CO_3$ flux was 1 wt.% and 3 wt.%. The mean size of particles were 200 nm and 400 nm when the amount of flux was 1 wt.% and 3 wt.%, respectively. The prepared phosphor particles had higher photoluminescence intensity than that of the commercial product regardless of the content of$ Li_2$$CO_3$ flux and had the maximum brightness when the content of flux was 5 wt %. The photoluminescence intensity of the nano-sized $Gd_2$$O_3$:Eu phosphor particles containing 3 wt.% $Li_2$$CO_3$ flux was 125% in comparison with that of the micron-sized $Y_2$$O_3$:Eu commercial product.

Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet (자외선 여기용 청색 및 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).