• Title/Summary/Keyword: phosphates

Search Result 304, Processing Time 0.03 seconds

Influence of Carbon and Nitrogen Sources in Solubilization of Hardly Soluble Mineral Phosphates by Penicillium Oxalicum CBPS-Tsa

  • Kim, Eun-Hee;Sundaram, Seshadri;Park, Myoung-Su;Shin, Wan-Sik;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2003
  • Phosphorus is one of the major plant growth limiting nutrients, despite being abundant in soils in both inorganic and organic forms. Phosphobioinoculants in the form of microorganisms can help in increasing the availability of accumulated phosphates for plant growth by solubilization. Penicillium oxalicum CBPSTsa, isolated from paddy rhizosphere, was studied for its phosphate solubilization. The influence of various carbon sources like glucose, sucrose, mannitol and sorbitol and nitrogen sources like arginine, sodium nitrate, potassium nitrate, ammonium chloride and ammonium sulphate were evaluated using liquid media with tricalcium phosphate (Ca-P), ferric phosphate (Fe-P) and aluminium phosphate (Al-P). Maximum soluble phosphate of 824 mg/L was found in the amendment of sucrose-sodium nitrate from 5 g/L of Ca-P. Mannitol, sorbitol, and ariginine were poor in phosphate solubilization. While sucrose was better carbon source in solubilization of Ca-P and Al-P, glucose fared better in solubilization of Fe-P. Though all the nitrogen sources enhanced P solubilization, nitrates were better than ammonium In the amendments of ammonium chloride and ammonium sulphate, higher uptake of available phosphates by the fungus was found, and this resulted in depletion of available P in Fe-P amendment Phosphate solubilization was accompanied by acidification of the media, and the highest pH decrease was observed in glucose amendment Among the nitrogen sources, ammonium chloride favored greater pH decrease.

곰팡이 분리주 MT60109가 생산하는 Phospholipase C 저해물질의 분리

  • Oh, Won-Keun;Lee, Hyun-Sun;Park, Chan-Sun;Ahn, Soon-Cheol;Ko, Hack-Ryong;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • During the screening of inhibitors against phospholipase C (PLC) and the formation of inositol phosphates (IP$_{t}$) at NIH3T3${\gamma}$1 cells from microbial secondary metabolites, we selected a fungal strain MT60109 which was capable of producing an inhibitor. By the taxonomic studies, this fungus was identified as Pseudallescheria sp. MT60109 and an inhibitor of PLC was purified by BuOH extraction and chromatographic techniques from the culture broth of Pseudallescheria sp. MT60109. The inhibitor was identified as thielavin B by the physico-chemical properties and spectroscopic analysis of UV, FAB-MS, $^{1}$H, $^{13}$C-NMR, $^{1}$H-$^{1}$H COSY and HMBC. Thielavin B showed potent inhibitory activity against PLC purified from bovine brain with an IC$_{50}$ of 20 $\mu$M. And it also inhibited the formation of inositol phosphates in platelet-derived growth factor (PDGF) -stimulated NIH3T3${\gamma}$1 cells with an IC$_{50}$ of 20 $\mu$M.

  • PDF

Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts (발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

Comparison of Physicochemical Properties of Starch Phosphates Prepared by Dry Heating and Extrusion Process (건식법과 Extrusion 공정에 의해 제조한 인산전분의 이화학적 성질 비교)

  • Kim, Chong-Tai;Ryu, Gi-Hyung;Kim, Dong-Chul;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.651-658
    • /
    • 1990
  • Starch phosphates were prepared by dry heating, gelatinizing method and extrusion process using sodium tripolyphosphote (STPP) as a substitution reagent and their physicochemical properities were compared. In the preparation of starch phosphate by dry heating method(DSP), the effect of reaction temperature was the most significant to the DS(Degree of substitution). In the phosphorylation reaction with gelatinized starch(GSP), the substitution ratio was increased with increasing the reaction temperature, but the increase was insignificant above $85^{\circ}C$. By extrusion with the corn starch containing 2.0% STPP at various moisture contents of 20, 25 and 30%, the DS values of extrudate(WESP) were within the range of between 0.0066 and 0.0083. The starch phosphate(DSP) products showed lowering the gelatinization temperature, increasing the clarity of the starch paste. However, WESP showed higher gelatinization temperature than that of raw starch. The starch phosphate prepared by extrusion process showed lower apparent viscosity of paste than that of the DSP at same condition. All of starch phosphates showed reducing the tendency of the paste retrogradation.

  • PDF

Effect of Oyster Shell Calcium Powder on the Quality of Restructured Pork Ham

  • Choi, Jung-Seok;Lee, Hyun-Jin;Jin, Sang-Keun;Lee, Hyun-Joo;Choi, Yang-Il
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.372-377
    • /
    • 2014
  • This study was conducted to evaluate the effects of oyster shell calcium powder (OSCP) as a substitute for phosphates in curing agent, on the quality of restructured pork ham. Restructured pork ham was processed under six treatment conditions: T1 (no additives), T2 (0.3% sodium tripolyphosphate), T3 (1.5% NaCl+0.5% whey protein), T4 (1.5% NaCl+0.5% whey protein+0.15% OSCP), T5 (1.5% NaCl+0.5% whey protein+0.3% OSCP), and T6 (1.5% NaCl+0.5% whey protein+0.5% OSCP). Addition of OSCP significantly increased the ash content and pH of restructured pork ham (p<0.05), but did not affect the cooking loss and water holding capacity values of restructured pork ham. Addition of OSCP had no effect on Hunter a and b surface color values of restructured pork ham, but did decrease the Hunter L surface color value (p<0.05). The addition of 0.5% OSCP showed significantly higher chewiness and springiness values of restructured pork ham, compared with the addition of phosphates (p<0.05). In conclusion, the addition of OSCP combined with low NaCl and 0.5% whey protein can be considered a viable substitute for phosphates in the curing agent, when processing restructured pork ham.

Antibacterial Activity of Sodium Phytate and Sodium Phosphates Against Escherichia coli O157:H7 in Meats (식육에서 피틴산염과 인산염의 Escherichia coli O157:H7균에 대한 항균효과)

  • Hue, Jin-Joo;Li, Lan;Lee, Yea-Eun;Lee, Ki-Nam;Nam, Sang-Yoon;Yun, Young-Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Yoo, Han-Sang;Lee, Beom-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • The approval of use of certain food-grade phosphates as food additives in a wide variety of meat products greatly stimulated research on the applications of phosphates in foods. Although phosphates have never been classified as antimicrobial agents, a number of investigators have reported that phosphates have antimicrobial activities. Phytic acid is a natural plant inositol hexaphosphate constituting 1-5% of most cereals, nuts, legumes, oil seeds, pollen, and spores. In this study, we investigated antibacterial activities of sodium phytate(SPT), sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP) on Escherichia coli O157:H7 on tryptic soy broth and in beef, pork and chicken. In tryptic soy broth, SPT, SPP and STPP at the concentrations of 0.05, 0.1, and 0.5% effectively inhibited the growth of Escherichia coli O157:H7 in a concentration-dependent manner. The bactericidal activity of SPT was the stronger than that of SPP or STPP at the same concentrations. In addition, the antibacterial effects of SPT, SPP and STPP at the concentrations of 0.05, 0.1, 0.3, and 0.5% on Escherichia coli O157:H7 were also investigated in raw or cooked meats including beef, pork and chicken. SPT, SPP and STPP significantly inhibited the bacterial growth in a dose-dependant manner (p<0.05). The bactericidal effect of SPT was stronger than that of SPP or STPP. The addition of SPT, SPP and STPP in meats increased meat pHs. SPP and STPP also increased the levels of soluble orthophosphate in meats but STP did not. These results indicate that SPT is very effective for inhibition of bacterial growth and that can be used as a muscle food additive for increasing functions of meats.

Antibacterial activity of sodium phytate, sodium pyrophosphate, and sodium tripolyphosphate against Salmonella typhimurium in meats

  • Hue, Jin-Joo;Baek, Dong-Jin;Lee, Yea Eun;Lee, Ki Nam;Nam, Sang Yoon;Yun, Young Won;Jeong, Jae-Hwang;Lee, Sang-Hwa;Yoo, Han Sang;Lee, Beom Jun
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.449-456
    • /
    • 2007
  • The approval of use of certain food-grade phosphates as food additives in a wide variety of meat products greatly stimulated research on the applications of phosphates in foods. Although phosphates have never been classified as antimicrobial agents, a number of investigators have reported that phosphates have antimicrobial activities. Phytic acid is a natural plant inositol hexaphosphate constituting 1-5% of most cereals, nuts, legumes, oil seeds, pollen, and spores. In this study, we investigated antibacterial activities of sodium phytate (SPT), sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP) on Salmonella typhimurium in tryptic soy broth and in row meat media including chicken, pork and beef. SPY, SPP and STPP at the concentrations of 0.5 and 1% dose-dependently inhibited the growth of S. typhimurium in tryptic soy broth at various pHs. The antibacterial activities of SPT and STPP were the stronger than that of SPP. In chicken, pork, and beef, SPT, SPP and STPP at the concentrations of 0.1, 0.5 and 1.0% significantly inhibited the bacterial growth in a dose-dependant manner (p < 0.05). The antibacterial activities of SPT, SPP, and STPP were more effective in chicken than beef. SPT and STPP at the concentration of 1% reduced the bacterial count by about 2 log units. The addition of SPT, SPP and STPP at the concentration of 0.5% in meats increased the meat pHs by 0.28-0.48 units in chicken, pork, and beef. These results suggest that SPT and STPP were equally effective for the inhibition of bacterial growth both in TSB and meat media and that SPT can be used as an animal food additive for increasing shelf-life and functions of meats.

Product Characteristics as Factors of Process Parameters in Starch Phosphates Preparation by Twin-screw Extruder (이축압출성형기로 인산전분 제조시 Process Parameters에 따른 제품의 특성)

  • Kim, Chong-Tai;Kim, Dong-Chul;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.235-240
    • /
    • 1991
  • Starch phosphates were prepared from the corn starch mixed with 2% sodium tripolyphosphate by twin-screw extruder with a feed rate of 20 kg/hr and an extrusion temperature of $130^{\circ}C$, and the effects of extrusion variables on the physicochemical properties (target parameters) of starch phosphates were investigated. Interrelations of system parameters (specific mechanical energy and extrudate moisture) and rheological properities of starch was analyzed by using the response surface analysis. Degree of substitution (DS) was increased with increasing the feed moisture, and showed the maximum value at the screw of near 250 rpm, Degree of gelatinization was proportionally increased with increasing the screw speed and decreasing the feed moisture. Apparent viscosity of the paste was increased with increasing the feed moisture, but it was not significantly affected by the screw speed. It was found by scanning electron microscopy that the starch microgranules were much more degradaded, and as consequent result, the intrinsic viscosity was decreased, whereas, water solubility index was increased. The rate of retrogradation of the gels was retarded with increasing DS and decreasing viscosity.

  • PDF