• Title/Summary/Keyword: phorbol ester

Search Result 111, Processing Time 0.047 seconds

The Inhibitory Effect of Quercetin on the Agonist-Induced Regulation of Vascular Contractility

  • Je, Hyun-Dong;Jeong, Ji-Hoon;La, Hyen-Oh
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.460-465
    • /
    • 2011
  • The present study was undertaken to investigate the influence of quercetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Quercetin at a low concentration (0.01-0.03 mM) directly and more significantly relaxed fluoride or thromboxane $A_2$-induced vascular contraction than phorbol ester-induced contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, quercetin more significantly inhibited thromboxane $A_2$-induced increases in pMYPT1 levels than phorbol ester-induced increases. It also more significantly inhibited thromboxane $A_2$-induced increases in pMYPT1 levels than pERK1/2 levels suggesting the mechanism involving the primarily inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1. This study provides evidence regarding the mechanism underlying the relaxation effect of quercetin on agonist-induced vascular contraction regardless of endothelial function.

Staurosporine Enhances Parathyroid Hormone-Induced Calcium Signal in UMR-106 Osteoblastic Cells

  • Lee, Suk-Kyeong;Paula H. Stern
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.119-123
    • /
    • 1999
  • Parathyroid hormone (PTH) treatment of bone and kidney-derived cells not only activates adenyly cyclase buy also increases intracellular free calcium, and translocates protein kinase C (PKC) from cytosol to plasma membranes. We have found that acute phorbol ester pretreatment significantly decreases PTH-induced calcium transients and the effect of phorbol ester was antagonized by staurosporine (ST). Although the major effect of ST in that study was the reversal of the action of phorbol ester, it appeared that ST may also have promoted the effect of PTH directly. To further investigate the observation, we examined the effect of ST on the intracellular calcium transients induced by PTH and $\alpha$-thrombin ($\alpha$-TH). For calcium transient experiments, UMR-106 cells were loaded with 2 mM fluo-acetoxymethylester for 30 min at room temperature. The cells were then washed and suspended in buffer containing 1 mM calcium. Fluorescence was detected at 530 nm, with excitation at 505 nm. ST alone did not cause calcium transients, but enhanced the transients elicited by PTH response. added 5 min before the hormone. Another protein kinase inhibitor H-7 likewise enhanced the calcium responses elicited by PTH, while genistein did not affect PTH response. Calcium transients elicited by $\alpha$-TH were also enhanced by ST. The results suggest that there might be tonically activated endogenous protein kinase(s) which inhibit calcium signaling of some calcemic agents.

  • PDF

MT-2007, Protein Kinase C Inhibitor from Aetinomycetes Isolate No. 2007-18 (방선균 분리주 No 2007-18이 생산하는 Protein Kinase C 저해물질, MT-2007)

  • 안종석;박문수;박찬선;윤병대;민태익;안순철;오원근;이현선;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.54-58
    • /
    • 1993
  • During the screening of inhibitors against protein kinase CCPKC) and the bleb formation of K562 cell induced by phorbol ester from microbial secondary metabolites, MT-2007 was purified by solvent extraction, and chromatographic techniques from Actinomycetes isolate No. 2007-18. It showed completely suppression of bleb formation of K562 cell surface induced by phorbol 12.13dibutylate at the concentration of 503.9 11M and ICso on PKC was 31.4 11M. Its structure was postulated as lasalocid A sodium salt by physico-chemical properties and UV, IR. MS, IH-NMR.

  • PDF

Phorbol Ester-Induced Periodic Contraction in Isolated Rabbit Jugular Vein

  • Ryu, Jae-Cheol;Jung, Dong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.225-232
    • /
    • 1995
  • The present study was conducted to evaluate the effect of phorbol 12,13-dibutyrate (PDBu) on the contraction of rabbit jugular vein in vitro. PDBu concentrations of greater than 10 nM induced a periodic contraction which was composed of rapid contraction, plateau and slow relaxation. The frequency of periodic contraction increased as PDBu concentration increased. The PDBu-induced contraction was inhibited by staurosporine (100 nM), it was not changed by tetrodotoxin $(1\;{\mu}M).$ In $Ca^{2+}$-free medium, PDBu induced a sustaining contraction, but not periodic contraction. Addition of $Ca^{2+}$ to medium evoked periodic contraction which was inhibited by nifedipine, PDBu concentrations of greater than $0.1\;{\mu}M$ increased ^{45}Ca^{2+}$ uptake without changing $^{45}Ca^{2+}$ efflux. Charybdotoxin and apamin, $Ca^{2+}$-activated K^{+}$ channel blockers, did not affect the PDBu-induced periodic contraction, whereas tetraethylammonium (TEA) abolished the periodicity. Pinacidil $(10\;{\mu}M).$, a potassium channel activator, blocked PDBu induced periodic contraction, which was recovered by glybenclamide $(10\;{\mu}M).$. In high potassium solution, PDBu did not produce the periodic contraction. These results suggest that the PDBu-induced periodicity of contraction is modulated by voltage dependent $Ca^{2+}$ channel and ATP-sensitive $K^{+}$ channel.

  • PDF

The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation

  • Hyuk-Jun, Yoon;Dae Hong, Kang;Fanxue, Jin;Joon Seok, Bang;Uy Dong, Sohn;Hyun Dong, Je
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.193-199
    • /
    • 2023
  • In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

The Effect of Galangin on the Regulation of Vascular Contractility via the Holoenzyme Reactivation Suppressing ROCK/CPI-17 rather than PKC/CPI-17

  • Yoon, Hyuk-Jun;Jung, Won Pill;Min, Young Sil;Jin, Fanxue;Bang, Joon Seok;Sohn, Uy Dong;Je, Hyun Dong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway. Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoride-dependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

Effect of Kaempferol on Modulation of Vascular Contractility Mainly through PKC and CPI-17 Inactivation

  • Hyuk-Jun Yoon;Heui Woong Moon;Young Sil Min;Fanxue Jin;Joon Seok Bang;Uy Dong Sohn;Hyun Dong Je
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

Antifungal Activities of Ethanolic Extract from Jatropha curcas Seed Cake

  • Saetae, Donlaporn;Suntornsuk, Worapot
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.319-324
    • /
    • 2010
  • Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the biodiesel fuel industry. Four repeated extractions from 5 g of J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rpm gave the highest yield of phorbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important fungal phytopathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsid, and Colletotrichum gloeosporioides. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

The Inhibitory Effect of Broccoli in Cruciferous Vegetables Derived-Sulforaphane on Vascular Tension (브로콜리 유래 Sulforaphane의 혈관 수축성 조절 효과)

  • Je, Hyun Dong
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.223-228
    • /
    • 2014
  • The present study was undertaken to investigate the influence of sulforaphane on vascular smooth muscle contractility and to determine the mechanism involved. We hypothesized that sulforaphane, the primary ingredient of broccoli of cruciferous vegetables, plays a role in vascular relaxation through inhibition of Rho-kinase in rat aortae. Intact of denuded arterial rings from male Sprague-Dawley rats were used and isometric tensions were recorded using a computerized data acquisition system. Interestingly, sulforaphane significantly inhibited fluoride, phorbol ester or thromboxane $A_2$ mimetic-induced contraction in denuded muscles suggesting that additional pathways different from endothelial nitric oxide synthesis such as inhibition of Rho-kinase or MEK might be involved in the vasorelaxation. Furthermore, sulforaphane inhibited thromboxane $A_2$-induced increases in pERK1/2 levels suggesting the mechanism including inhibition of thromboxane $A_2$-induced increases in ERK1/2 phosphorylation. This study provides evidence that sulforaphane induces vascular relaxation through inhibition of Rho-kinase or MEK in rat aortae.

The Inhibitory Effect of Pioglitazone on Agonist-dependent Vascular Contractility

  • Je, Hyun-Dong;Cha, Sung-Jae;Jeong, Ji-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.72-77
    • /
    • 2008
  • The present study was undertaken to determine whether pioglitazone treatment influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Pioglitazone decreased Rho-kinase activating agonist-induced contraction but not phorbol ester-induced contraction suggesting the least involvement of $Ca^{2+}$-independent thin filament regulation of contractility. Furthermore, pioglitazone decreased thromboxane $A_2$ mimeticinduced phosphorylation of MYPT1 at Thr855, the newly-highlighted site, instead of Thr696. In conclusion, this study provides the evidence and possible related mechanism concerning the vasorelaxing effect of pioglitazone as an antihypertensive on the agonist-induced contraction in rat aortic rings regardless of endothelial function.