Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.4.460

The Inhibitory Effect of Quercetin on the Agonist-Induced Regulation of Vascular Contractility  

Je, Hyun-Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu)
Jeong, Ji-Hoon (Department of Pharmacology, College of Medicine, Chung-Ang University)
La, Hyen-Oh (Department of Pharmacology, College of Medicine, The Catholic University of Korea)
Publication Information
Biomolecules & Therapeutics / v.19, no.4, 2011 , pp. 460-465 More about this Journal
Abstract
The present study was undertaken to investigate the influence of quercetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Quercetin at a low concentration (0.01-0.03 mM) directly and more significantly relaxed fluoride or thromboxane $A_2$-induced vascular contraction than phorbol ester-induced contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, quercetin more significantly inhibited thromboxane $A_2$-induced increases in pMYPT1 levels than phorbol ester-induced increases. It also more significantly inhibited thromboxane $A_2$-induced increases in pMYPT1 levels than pERK1/2 levels suggesting the mechanism involving the primarily inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1. This study provides evidence regarding the mechanism underlying the relaxation effect of quercetin on agonist-induced vascular contraction regardless of endothelial function.
Keywords
ERK1/2; Fluoride; MYPT1; Phorbol ester; Quercetin; Rho-kinase; Vasodilation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004). Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504.   DOI
2 Zang, M., Xu, S., Maitland-Toolan, K. A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, M., Verbeuren, T. J. and Cohen, R. A. (2006). Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180-2191.   DOI
3 Zeng, Y. Y., Benishin, C. G. and Pang, P. K. (1989). Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. I. Studies with fluoride. J. Pharmacol. Exp. Ther. 250, 343-351.
4 Shenolikar, S. and Nairn, A. C. (1991). Protein phosphatases: recent progress. Adv. Second Messenger Phosphoprotein Res. 23, 1-121.
5 Shimizu, M. and Weinstein, I. B. (2005). Modulation of signal transduction by tea catechins and related phytochemicals. Mutat. Res. 591, 147-160.   DOI
6 Somlyo, A. P. and Somlyo, A. V. (1994). Signal transduction and regulation in smooth muscle. Nature 372, 231-236.   DOI
7 Somlyo, A. P. and Somlyo, A. V. (1998). From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta. Physiol. Scand. 164, 437-448.   DOI
8 Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994.   DOI
9 Somlyo, A. P. and Somlyo, A. V. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J. Physiol. 522, 177-185.   DOI
10 Tsai, M. H. and Jiang, M. J. (2006). Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232.   DOI
11 Wier, W. G. and Morgan, K. G. (2003). $\alpha$1-Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91-139.
12 Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005). Thromboxane $A_2$-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774.   DOI
13 Low, A. M. (1996). Role of tyrosine kinase on $Ca2^+$ entry and refi lling of agonist-sensitive $Ca2^+$ stores in vascular smooth muscles. Can. J. Physiol. Pharmacol. 74, 298-304.   DOI
14 Mamani-Matsuda, M., Kauss, T., Al-Kharrat, A., Rambert, J., Fawaz, F., Thiolat, D., Moynet, D., Coves, S., Malvy, D. and Mossalayi, M. D. (2006). Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage infl ammatory mediators. Biochem. Pharmacol. 72, 1304-1310.   DOI
15 Pfitzer, G. (2001). Invited reviews: regulation of myosin light chain phosphorylation in smooth muscle. J. Appl. Physiol. 91, 497-503.
16 Muranyi, A., MacDonald, J. A., Deng, J. T., Wilson, D. P., Haystead, T. A., Wlash, M. P., Erdodi, F., Kiss, E., Wu, Y. and Hartshorne, D. J. (2002). Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem. J. 366, 211-216.
17 Naderi, G. A., Asgary, S., Sarraf-Zadegan, N. and Shirvany, H. (2003). Anti-oxidant effect of fl avonoids on the susceptibility of LDL oxidation. Mol. Cell Biochem. 246, 193-196.   DOI   ScienceOn
18 Nicholson, S. K., Tucker, G. A. and Brameld, J. M. (2008). Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc. Nutr. Soc. 67, 42-47.   DOI
19 Ross, J. A. and Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22, 19-34.   DOI
20 Rotelli, A. E., Guardia, T., Juarez, A. O., de la Rocha, N.E. and Pelzer, L. E. (2003). Comparative study of flavonoids in experimental models of infl ammation. Pharmacol. Res. 48, 601-606.   DOI
21 Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003). $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556.   DOI
22 Gilman, A. G. (1984). Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1-4.   DOI
23 Guardia, T., Rotelli, A. E., Juarez, A. O. and Pelzer, L. E. (2001). Antiinfl ammatory properties of plant fl avonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 56, 683-687.   DOI
24 Khoo, N. K., White, C. R., Pozzo-Miller, L., Zhou, F., Constance, C., Inoue, T., Patel, R. P. and Parks, D. A. (2010). Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic. Biol. Med. 49, 339-347.   DOI
25 Hollman, P. C. and Katan, M. B. (1999). Health effects and bioavailability of dietary flavonols. Free Radic. Res. 31, 75-80.   DOI   ScienceOn
26 Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006). A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33.   DOI
27 Kanaho, Y., Moss, J. and Vaughan, M. (1985). Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J. Biol. Chem. 260, 11493-11497.
28 Kitazawa, T., Masuo, M. and Somlyo, A. P. (1991). Protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 88, 9307-9310.   DOI
29 Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., Hakulinen, T. and Aromaa, A. (2002). Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76, 560-568.
30 Lotito, S. B. and Frei, B. (2006). Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 281, 37102-37110.   DOI
31 Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249.   DOI
32 Boots, A. W., Haenen, G. R. and Bast, A. (2008). Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 585, 325-337.   DOI   ScienceOn
33 Bigay, J., Deterre, P., Pfi ster, C. and Chabre, M. (1985). Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 191, 181-185.   DOI
34 Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Curr. Opin. Clin. Nutr. Metab. Care 11, 733-740.   DOI
35 Blackmore, P. F. and Exton, J. H. (1986). Studies on the hepatic calcium- mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261, 11056-11063.
36 Chabre, M. (1990). Aluminofl uoride and beryllofl uoride complexes: a new phosphate analogs in enzymology. Trends Biochem. Sci. 15, 6-10.   DOI
37 Cockcroft, S. and Taylor, J. A. (1987). Fluoroaluminates mimic guanosine 5'-[gamma-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem. J. 241, 409-414.
38 Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A. and Wilson, E. (2001). Regulation of ion channels by protein tyrosine phosphorylation. Am. J. Physiol. 281, H1835-H1862.
39 Deng, J. T., Van Lierop, J. E., Sutherland, C. and Walsh, M. P. (2001). Ca2+-independent smooth muscle contraction: a novel function for integrin-linked kinase. J. Biol. Chem. 276, 16365-16373.   DOI