• Title/Summary/Keyword: phoneme HMM

Search Result 62, Processing Time 0.023 seconds

A Study on Word Recognition using sub-model based Hidden Markov Model (HMM 부모델을 이용한 단어 인식에 관한 연구)

  • 신원호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.395-398
    • /
    • 1994
  • In this paper the word recognition using sub-model based Hidden Markov Model was studied. Phoneme models were composed of 61 phonemes in therms of Korean language pronunciation characteristic. Using this, word model was maded by serial concatenation. But, in case of this phoneme concatenation, the second and the third phoneme of syllable are overlapped in distribution at the same time. So considering this, the method that combines the second and the third phoneme to one model was proposed. And to prevent the increase in number of model, similar phonemes were combined to one, and finially, 57 models were created. In experiment proper model structure of sub-model was searched for, and recognition results were compared. So similar recognition results were maded, and overall recognition rates were increased in case of using parameter tying method.

  • PDF

Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks (음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구)

  • Kim, Hyung-Tai;Ha, Jin-Young
    • MALSORI
    • /
    • no.59
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF

Isolated Korean Digits Recognition Using Stochasitc Transition Models With Phoneme-based VQ Codebooks (음소단위 코드북간의 확률적 전이 모델을 이용한 한국어 숫자음 인식에 관한 연구)

  • Choi, Hwan-Jin;Oh, Yung-Hwan
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.149-157
    • /
    • 1993
  • 음성인식을 위해 다양한 방법들이 제안되어 있다. 본 연구에서는 음소단위 각각의 벡터 양자화된 코드북의 색인을 학습하는 HMM을 이용하여 한국어 숫자음을 대상으로 인식 실험을 수행하였다. 실험결과, 기존의 단어단위 HMM과 음소단위로 이루어진 유한상태기계(FSM)구조의 인식기에 비해 높은 인식율을 보였다.

  • PDF

State-Dependent Weighting of Multiple Feature Parameters in HMM Recognizer (HMM 인식기에서 상태별 다중 특징 파라미터 가중)

  • 손종목;배건성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper, we proposed a new approach to weight each feature parameter by considering the dispersion of feature parameters and its degree of contribution to recognition rate. We determined the total distribution factor that is proportional to recognition rate of each feature parameter and the dispersion factor according to the dispersion of each feature parameter. Then. we determined state-dependent weighting using the total distribution factor and dispersion factor. To verify the validity of the proposed approach, recognition experiments were performed using the PLU(Phoneme-Like Unit)-based HMM. Experimental results showed the improvement of 7.7% at the recognition rate using the proposed method.

  • PDF

A Study on Speech Recognition System Using Continuous HMM (연속분포 HMM을 이용한 음성인식 시스템에 관한 연구)

  • Kim, Sang-Duck;Lee, Geuk
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.221-225
    • /
    • 1998
  • 본 논문에서는 연속분포(Continuous) HMM(hidden Markov model)을 기반으로 하여 한국어 고립단어인식 시스템을 설계, 구현하였다. 시스템의 학습과 평가를 위해 자동차 항법용 음성 명령어 도메인에서 추출한 10개의 고립단어를 대상으로 음성 데이터 베이스를 구축하였다. 음성 특징 파라미터로는 MFCCs(Mel Frequency Cepstral Coefficients)와 차분(delta) MFCC 그리고 에너지(energy)를 사용하였다. 학습 데이터로부터 추출한 18개의 유사 음소(phoneme-like unit : PLU)를 인식단위로 HMM 모델을 만들었고 조음 결합 현상(채-articulation)을 모델링 하기 위해 트라이폰(triphone) 모델로 확장하였다. 인식기 평가는 학습에 참여한 음성 데이터와 학습에 참여하지 않은 화자가 발성한 음성 데이터를 이용해 수행하였으며 평균적으로 97.5%의 인식성능을 얻었다.

  • PDF

An Implementation of Rejection Capabilities in the Isolated Word Recognition System (고립단어 인식 시스템에서의 거절기능 구현)

  • Kim, Dong-Hwa;Kim, Hyung-Soon;Kim, Young-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.106-109
    • /
    • 1997
  • For the practical isolated word recognition system, the ability to reject the out-of -vocabulary(OOV) is required. In this paper, we present a rejection method which uses the clustered phoneme modeling combined with postprocessing by likelihood ratio scoring. Our baseline speech recognition system was based on the whole-word continuous HMM. And 6 clustered phoneme models were generated using statistical method from the 45 context independent phoneme models, which were trained using the phonetically balanced speech database. The test of the rejection performance for speaker independent isolated words recogntion task on the 22 section names shows that our method is superior to the conventional postprocessing method, performing the rejection according to the likelihood difference between the first and second candidates. Furthermore, this clustered phoneme models do not require retraining for the other isolated word recognition system with different vocabulary sets.

  • PDF

Speaker Adaptation for Voice Dialing (음성 다이얼링을 위한 화자적응)

  • ;Chin-Hui Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.455-461
    • /
    • 2002
  • This paper presents a method that improves the performance of the personal voice dialling system in which speaker independent phoneme HMM's are used. Since the speaker independent phoneme HMM based voice dialing system uses only the phone transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the system which uses the speaker dependent models due to the phone recognition errors generated when the speaker independent models are used. In order to solve this problem, a new method that jointly estimates transformation vectors for the speaker adaptation and transcriptions from training utterances is presented. The biases and transcriptions are estimated iteratively from the training data of each user with maximum likelihood approach to the stochastic matching using speaker-independent phone models. Experimental result shows that the proposed method is superior to the conventional method which used transcriptions only.

Korean Phoneme Recognition Using duration-dependent 3-State Hidden Markov Model (음소길이를 고려한 3-State Hidden Markov Model 에 의한 한국어 음소인식)

  • Yoo, H.-C.;Lee, H.-J.;Park, B.-C.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 1989
  • This paper discribes the method associated with modeling of Korean phonemes. Hidden Markov models(HMM's) may be viewed as an effective technique for modeling the inherent nonstationarity of speech signal. We propose a 3-state phoneme model to represent the sequentially changing characteristics of phonemes, i.e., transition-to-stationary-to-transition. Also we clarify that the duration of a phoneme is an important factor to have an effect in recognition accuracy and show that improvement in recognition rate can be obtained by using duration-dependent 3-state hidden Markov models.

  • PDF

Korean Phoneme Recognition Using Neural Networks (신경회로망 이용한 한국어 음소 인식)

  • 김동국;정차균;정홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.360-373
    • /
    • 1991
  • Since 70's, efficient speech recognition methods such as HMM or DTW have been introduced primarily for speaker dependent isolated words. These methods however have confronted with difficulties in recognizing continuous speech. Since early 80's, there has been a growing awareness that neural networks might be more appropriate for English and Japanese phoneme recognition using neural networks. Dealing with only a part of vowel or consonant set, Korean phoneme recognition still remains on the elementary level. In this light, we develop a system based on neural networks which can recognize major Korean phonemes. Through experiments using two neural networks, SOFM and TDNN, we obtained remarkable results. Especially in the case of using TDNN, the recognition rate was estimated about 93.78% for training data and 89.83% for test data.

The Effect of the Number of Phoneme Clusters on Speech Recognition (음성 인식에서 음소 클러스터 수의 효과)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1221-1226
    • /
    • 2014
  • In an effort to improve the efficiency of the speech recognition, we investigate the effect of the number of phoneme clusters. For this purpose, codebooks of varied number of phoneme clusters are prepared by modified k-means clustering algorithm. The subsequent processing is fuzzy vector quantization (FVQ) and hidden Markov model (HMM) for speech recognition test. The result shows that there are two distinct regimes. For large number of phoneme clusters, the recognition performance is roughly independent of it. For small number of phoneme clusters, however, the recognition error rate increases nonlinearly as it is decreased. From numerical calculation, it is found that this nonlinear regime might be modeled by a power law function. The result also shows that about 166 phoneme clusters would be the optimal number for recognition of 300 isolated words. This amounts to roughly 3 variations per phoneme.