• Title/Summary/Keyword: phenylephrine

Search Result 261, Processing Time 0.025 seconds

Effects of Butanol Fraction of Crataegi Fructus on the Translocation of PKC $\alpha$ and Myosin Phosphatase Subnits in Vascular Smooth Muscle

  • Lee Heon Jae;Choi Ho Jeong;Kim Gil Whon;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.1060-1065
    • /
    • 2002
  • LC20 phosphorylation and PKC α play an important role in modulation of contractile activity of smooth muscle. Besides, myosin phosphatase is also related with smooth muscle contraction in signaling pathways. We previously demonstrated that Crataegi Fructus inhibited phenylephrine-induced contraction and which might be implicated in nitrite formation(Son et al., 2002). In this study, we investigated the effects of butanol fraction of Crataegi Fructus(BFFC) on the localization of α-protein kinease C(PKC α) and myosin phosphatase subnits(MPs) in freshly isolated single ferret potal vein cells, and phosphorylation of LC20 during phenylephrine stimulation. In PKC α and MPs localization, BFFC blocked its translocation from the cytosol to the cell membrane by treatment of phenylephrine. BFFC have also dephosphorylated LC20 phosphorylation by phenylephrine stimulation under basal level, but no significant. These results indicate that the relaxation effect of BFFC is associated with inhibition of PKC α activation and MPs dissociation, and thus myosin phosphatase activity may be increased.

Vasorelaxing Effect of Isoflavonoids Via Rho-kinase Inhibition in Agonist-Induced Vasoconstriction (Isoflavonoids에 의한 혈관이완효과에 있어 Rho-kinase의 역할)

  • Je, Hyun-Dong
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.293-299
    • /
    • 2006
  • The aim of present study was to investigate the possible influence of Rho-kinase inhibition on the plant-derived estrogen-like compounds-induced arterial relaxation. Agonist- or depolarization-induced vascular smooth muscle contractions involve the activation of Rho-kinase pathway. However there are no reports addressing the question whether this pathway is involved in genistein-or daidzein-induced vascular relaxation in rat aortae precontracted with phenylephrine or thromboxane $A_2$ mimetic U-46619. We hypothesized that Rho-kinase inhibition plays a role in vascular relaxation evoked by genistein or daidzein in rat aortae. Endothelium-intact and denuded arterial rings from male Sprague-Dawley rats were used and isometric contractions were recorded using a computerized data acquisition system. Genistein concentration-dependently inhibited phenylephrine or thromboxane $A_2-induced$ contraction regardless of endothelial function. Surprisingly, in the agonists-induced contraction, similar results were also observed in aortae treated with daidzein, the inactive congener for protein tyrosine kinase inhibition, suggesting that Rho-kinase might act upstream of tyrosine kinases in phenylephrine-induced contraction. In conclusion, in the agonists-precontracted rat aortae, genistein and daidzein showed similar relaxant response regardless of tyrosine kinase inhibition or endothelial function.

Participation of COX-1 and COX-2 in the contractile effect of phenylephrine in prepubescent and old rats

  • Guevara-Balcazar, Gustavo;Ramirez-Sanchez, Israel;Mera-Jimenez, Elvia;Rubio-Gayosso, Ivan;Aguilar-Najera, Maria Eugenia;Castillo-Hernandez, Maria C.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • Vascular reactivity can be influenced by the vascular region, animal age, and pathologies present. Prostaglandins (produced by COX-1 and COX-2) play an important role in the contractile response to phenylephrine in the abdominal aorta of young rats. Although these COXs are found in many tissues, their distribution and role in vascular reactivity are not clear. At a vascular level, they take part in the homeostasis functions involved in many physiological and pathologic processes (e.g., arterial pressure and inflammatory processes). The aim of this study was to analyze changes in the contractile response to phenylephrine of thoracic/abdominal aorta and the coronary artery during aging in rats. Three groups of rats were formed and sacrificed at three distinct ages: prepubescent, young and old adult. The results suggest that there is a higher participation of prostanoids in the contractile effect of phenylephrine in pre-pubescent rats, and a lower participation of the same in old rats. Contrarily, there seems to be a higher participation of prostanoids in the contractile response of the coronary artery of older than pre-pubescent rats. Considering that the changes in the expression of COX-2 were similar for the three age groups and the two tissues tested, and that expression of COX-1 is apparently greater in older rats, COX-1 and COX-2 may lose functionality in relation to their corresponding receptors during aging in rats.

Effects of α1-adrenoceptor stimulation on ventricular electrophysiological properties of guinea pigs (기니픽 심근의 전기생리학적 특성에 미치는 α1-Adrenoceptor 자극효과)

  • Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.199-209
    • /
    • 1993
  • The effects of ${\alpha}_1$-adrenergic stimulation on membrane potential, intracellular sodium activity $(a_N{^i{_a}})$, and contractility were investigated in the isolated papillary muscle of euthyroid, hyperthyroid, and hypothyroid guinea pigs. Cardiac alterations in the thyroid state have been shown to induce marked changes in action potential characteristics, the most pronounced shortening of action potential duration by hyperthyroidism and an increase in duration by hypothyroidism. $10^{-5}M$ Phenylephrine produced a decrease in $(a_N{^i{_a}})$ in euthyroid and hypothyroid preparations, but an increase in $(a_N{^i{_a}})$ in hyperthyroid ones. The major findings were that phenylephrine produced a stronger positive inotropic effect(PIE) without initial negative inotropic effect(NIE) in hyperthyroid preparations, while phenylephrine produced markedly NIE in hypothyroid ones. The alterations in membrane potential, $(a_N{^i{_a}})$, and contractility were abolished by $3{\times}10^{-5}M$ prazosin in hypothyroidism. In hypothyroid ventricular muscle, the decrease in $(a_N{^i{_a}})$ caused by phenylephrine were not abolished or reduced by $10^{-5}M$ strophanthidin, $10^{-5}M$ TTX, $3{\times}10^{-4}M$ lidocaine, or $100^{-5}M$ verapamil. These results indicate that the ${\alpha}_1$-adrenoceptor-mediated decrease in $(a_N{^i{_a}})$ is not associated with a stimulation of the $Na^+$-$K^+$ pump, inhibition of the $Na^+$ or $Ca^+$ channel in hypothyroid ventricular muscle. $10^{-5}M$ Phenylephrine decreased $(a_N{^i{_a}})$ but increased $(a_N{^i{_a}})$ in the presence of a PKC activator phorbol dibutyrate$(PDB_u)$. In conclusion, it is suggested that the following sequence of events in response to phenyleplhane occur in guinea pig ventricular muscle. First, changes in thyroid state may contribute to the ventacular electrophysiological propeties or ion transport system. Second, the adrenoceptor-mediated initial transient NIE may be associated with the decrease in $(a_N{^i{_a}})$ by PKC activation.

  • PDF

Studies on the Effect and Mechanism of Geupoongjibo-dan's Relaxation on a Blood Vessel (거풍지보단(祛風至寶丹)의 혈관이완 효능과 기전에 관한 연구)

  • Kim, Dong-Eun;Park, Dong-Wan;Jeong, Sung-Hyun;Shin, Gil-Cho;Lee, Won-Chul;Han, Sung-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • Objectives : This study was conducted to evaluate the effect and mechanism of Geupoongjibo-dan's relaxation of the tension of the blood vessel caused by Phenylephrine and KCI. Methods : In order to study the effect of Geupoongjibo-dan's relaxation of the blood vessel tension, Geupoongjibo-dan extract was infused into Phenylephrine and KCI-induced contracted rabbit aorta strips. To analyze the mechanism of Geupoongjibo-dan's effect on the blood vessel, Geupoongjibo-dan extract infused into Phenylephrine and KCI-induced contracted strips induced by agonists after treatment of N${\omega}$-nitro-L-arginine, Methylene Blue. Results : 1. Geupoongjibo-dan was very effective in relaxing the blood vessels contracted by Phenylephrine. 2. Geupoongjibo-dan was effective against Phenylephrine, than against KCI. 3. Geupoongjibo-dan's more relaxation effect on a blood vessel was terminated by N${\omega}$-nitro-L-arginine and methylene treatment. Conclusion : THis study showed that Geupoongjibo-dan's relaxation effect on a blood vessel is irrelevant to ${\alpha}$-adrenalin receptor, and it relaxes contracted vessels through cGMP channel.

  • PDF

Potentiating Effect of Prostagliandin $E_1$ on the Action of Sympathomimetics in the Isolated Vas Deferens of Guinea-Pig (적출(摘出) 기니아-픽 정관(精管)에 있어서 교감신경효능제(交感神經效能劑)의 作用(작용)에 대(對)한 Prostaglindin $E_1$의 강화작용(强化作用))

  • Hong, Ki-Whan;Kang, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.10 no.1 s.15
    • /
    • pp.31-40
    • /
    • 1974
  • 1. The authors investigated the effects of $PGE_1$ on the action of sympathomimetics in the vas deferens of guinea-pig, comparing with those in the rat vas deferens, and also the action of $PGE_1$ on the motility of nerve-free smooth muscle of chick amnion. 2. In the isolated guinea-pig vas deferens, the actions of phenylephrine and norepinephrine were much potentiated by pretreatment with $PGE_1$. Futher, in the isolated hypogastric nerve-vas deferens preparation of guinea-pig, effects of phenylephrine, norepinephrine and tyramine on the contractile response of vas to the hypogastric nerve stimulation and to the transmural stimulation were also augumented especially in tension by $PGE_1$-pretreatment. 3. In the isolated hypogastric nerve-vas preparation of rat, both contractile responses to hypogastric nerve and transmural stimulation were slowly reduced by treatment with $PGE_1$ and the potentiated effect of phenylephrine or norepinephrine was not observed in spite of pretreatment with $PGE_1$. 4. The actions of phenylephrine and norepinephrine on the denervated vas deferens of guinea-pig were also enhanced by $PGE_1$ as it were in the intact vas deferens, but there was no significant effect by $PGE_1$ on the action of norepinephrine in the denervated rat vas deferens. 5. $PGE_1$ in low concentration $(10^{-8}g/ml)$ did not affect the spontaneous motility of nerve-free smooth muscle of chick amnion ($9{\sim}11$ th day incubated chick), but in large concentration $(5{\times}10^{-8}g/ml)$ it caused irregular and slightly inhibitory movement. Pretreatment with $PGE_1$ on chick amnion did not exert any change on the action of phenylephrine applied. However, the stimulatory action of physostigmine on the chick amnion was a little antagonized by the low concentration of $PGE_1$. 6. It might be summarized that there is species difference between the actions of $PGE_1$ on the vas deferens of guinea-pig and that of rat, and the action of $PGE_1$ on the guinea-pig vas deferens might be mediated by the other mechanism rather than by direct action on the vas musculature.

  • PDF

A Novel Ocular Delivery System for Phenylephrine Hydrochloride

  • Durrani, A.M.;Jamshaid, M.;Kellaway, I.W.
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.386-389
    • /
    • 1996
  • The in vivo behaviour of phenylephrine hydrochloride in different vehicles like gels of Carbopol $907^circledR$, Carbopol $934P^circledR$ and latex system of cellulose acetate hydrogen phthalate(CAHP) was evaluated by measuring the reduction in intraocular pressure and the mydriatic activity. The parameters that haave been utilised to assess the performance of the formulations were the area under the curve (AUC), the maximum mydriasis $(I_{max})$, ethe time of maximum response $(T_{max})$ and the duration of activity (D). The influence of viscosity and mucoadhesion on the bioavailability parameters has also been investigated. Carbopol 934P and CAHP formulations showed prolonged duration of action and greater AUC compared to Carbopol 907 aqueous solution(P<0.05).

  • PDF

Effects of α1-adrenoceptor stimulation on Mg2+ release in perfused guinea pig heart (관류 기니픽 심장에서 Mg2+ 유리에 미치는 α1-adrenoceptor 자극효과)

  • Hwang, Sung-chul;Kim, Sang-jin;Kang, Hyung-sub;Lee, Seung-ok;Kang, Chang-won;Kwon, Oh-deog;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.327-335
    • /
    • 1996
  • Recently in spite of the interest on the regulation of intracellular $Mg^{2+}$ by neurotransmitters or drugs, the magnesium ion($Mg^{2+}$) regulation by ${\alpha}_1$-adrenoceptor stimulation has not been studied in the heart yet. To elucidate the regulation of ${\alpha}_1$-adrenoceptor stimulation-induced $Mg^{2+}$ release and the effects of ${\alpha}_1$-adrenoceptor stimulation on pathophysiological conditions, in this study we have evaluated the effects of phenylephrine, PMA, $H_7$. staurosporine, verapamil and lidocaine on $Mg^{2+}$ release in perfused guinea pig heart. During preperfusion exogenous $Mg^{2+}$ was added to the medium to give 1.2mM 15min before starting to addition of drugs, and then the infusion of exogenous $Mg^{2+}$ was stopped. $Mg^{2+}$ in the perfusate leaving the heart was measured by atomic absorption spectrophotometry. $Mg^{2+}$ free solution produced an increase in heart rate and phenylephrine elicited $Mg^{2+}$ release from the heart. $Mg^{2+}$ release by phenylephrine was abolished by combined treatment with prazosin. By contrast, cardiac $Mg^{2+}$ uptake induced by a protein kinase C(PKC) activator, PMA was abolished by a selective PKC inhibitor, staurosporine. And the phenylephrine-induced $Mg^{2+}$ release was not affected by the PKC inhibitor, $H_7$. When verapamil or lidocaine was added to perfusing solution, $Mg^{2+}$ release was potentiated by phenylephrine from perfused guinea pig heart. These results suggest that ${\alpha}_1$-adrenoceptor stimulation caused $Mg^{2+}$ release and that PKC is not involved in ${\alpha}_1$-adrenoceptor mediated $Mg^{2+}$ release from perfused guinea pig heart. Under pathophysiological conditions, the $Mg^{2+}$ alteration by ${\alpha}_1$-adrenoceptor stimulation is considerable.

  • PDF

Effects of ${\alpha}_1-Adrenergic$ Stimulation on Contractility and Intracellular $Na^+$ Activity of Guinea Pig Ventricular Muscles (기니픽 심근의 수축력과 세포내 $Na^+$ 활성도에 미치는 ${\alpha}_1-Adrenergic$ 수용체 자극효과)

  • Kim, Jin-Sang;Kang, Hyung-Sub;Chae, Soo-Wan;Lee, Chin-Ok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.189-199
    • /
    • 1996
  • Myocardial ${\alpha}_1-adrenoceptors$ have been shown to mediate a biphaslc inotropic response that was characterized by a transient decline followed by a sustained increasing phase in guinea pig ventricular muscle. Recently one group reported that an ${\alpha}_1-adrenoceptors-induced$ intracellular $Na^+$ decrease is linked to fast $Na^+$ channel inhibition and another group reported that it is linked to $Na^+$-$K^+$ pump activation by ${\alpha}_{1b}-adrenoceptors$. But until now, its mechanism is not clear. Therefore, to see whether the $Na^+$channel or $Na^+-K^+$ pump is related to a decrease in intracellular $Na^+$ activity and/or the negative inotropic response, and which ${\alpha}_1-adrenoceptor$ subtype was involved in the decrease in intracellular $Na^+$activity by phenylephrine, we used conventional and sodium selective microelectrodes, and tension transducer to determine the effects of ${\alpha}_1-adrenergic$ stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force in guinea pig ventricular muscles. $10^{-5}$ M Phenylephrine produced a slight hyperpolarization of the diastolic membrane potential, a decrease or increase in $a_N^i_a$, and a biphasic inotropic response. The negative inotropic response accompanied by a decrease in intracellular $Na^+$activity, whereas in muscles showing a remarkable positive inotropic response without initial negative inotropic effect was accompanied by an increase in intracellular $Na^+$ activity. The decrease in intracellular $Na^+$ activity was apparently inhibited by WB4101, an antagonist of the ${\alpha}_{1a}-adrenoceptors$. The decrease in intracellular $Na^+$ activity caused by phenylephrine was not abolished or reduced by a block of the fast $Na^+$ channels. $V_{max}$ also was not affected by phenylephrine. Phenylephrine produced an increase in intracellular $Na^+$ activity in the presence of a high concentration of extracellular $Ca^{2+}$ (in quiescent muscle) or phorbol dibutyrate, a protein kinase C activator(in beating muscle). These suggest that the ${\alpha}_{1a}-adrenoceptors-mediated$ decrease in intracellular $Na^+$ activity may be related to the protein kinase C.

  • PDF

Contractile Effect of Ultraviolet Light on Isolated Thoracic Aortae of Rats (흰쥐 적출 흉부대동맥근의 자외선 수축반응에 관하여)

  • Baik, Yung-Hong;Kang, Seong-Don;Kang, Jung-Chaee
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • Ultraviolet light radiation (UVR) did not affect resting tension of isolated thoracic aortae of rats. In aortic rings contracted with phenylephrine, however, UVR produced contractile and relaxant responses in preparations with and without endothelium, respectively. The contractile response was dependent upon the duration $(10{\sim}320\;sec)$ of irradiation, while the relaxation was not. UVR-induced contractions in endothelium-intact rings were significantly potentiated by increasing the concentrations of phenylephrine from $10^{-7}M$ to $10^{-5}M$, and also by addition of $10^{-6}M$ acetylcholine, $10^{-7}M$ isoproterenol and $3.5{\times}10^{-8}M$ nitroglycerine. However, addition of $10^{-6}M$ phentolamine, or $10^{-7}M$ to $10^{-6}M$ LY83583 inhibited the contraction or reversed the contraction to a relaxation. In endothelium-removed preparations the UVR-induced relaxation was attenuated by increasing concentractions of phenylephrine, and by addition of isoproterenol, nitroglycerin, phentolamine or LY83583. These results suggest that UVR produces contractile and relaxant responses in rat thoracic aortae with and without endothelium, respectively, and that the contractile effect results from the inhibition of endothelium-derived relaxing factor (EDRF) release by UVR the inhibition of and/or is in part re-lated to some endothelium-derived contractile factors (EDCFs).

  • PDF