• Title/Summary/Keyword: phenols

Search Result 434, Processing Time 0.031 seconds

Determination of Total Phenols in Environmental Waters by Capillary-HPLC with U.S.E.P.A. Classified Eleven Priority Pollutant Phenols after Nitrosation and Their Visible Spectrophotometric Detection

  • Chung, Yong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.297-302
    • /
    • 2005
  • The determination of total phenols was accomplished by capillary-high performance liquid chromatography (capillary-HPLC) after nitrosation of the U.S.E.P.A. classified 11 priority pollutant phenols, using the nitrosated parent phenol (POHNO) as a reference for calibration. The optimum mobile phase composition for this analysis was found by examining the effect of changing the percentage of acetonitrile (MeCN) in the mobile phase on retention factors (k values) and peak intensities. As MeCN percentage was increased, k values were reduced and peak intensities were generally increased. From the results obtained, it was found that the optimum mobile phase was 90%(v/v) MeCN solution at pH 8.0, the detection wavelength of 400 nm, and a detection limit (D.L., concentration at signal to noise ratio (S/N) of 3.0) of 4.5 ${\times}$ $10^{-7}$ M. In addition, 10 of the 11 phenols present in mineral or waste water were separated after the nitrosation by capillary-HPLC. The optimum mobile phase for separation was a 40%(v/v) MeCN solution at pH 5.0.

Study of Retention of Mono-Substituted Phenols in Reversed-Phase Liquid Chromatography Based on the Linear Solvation Energy Relationships Using the Solvatochromic Parameters for Mobile Phases, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$

  • Park, Jung-Hag;Jang, Myung-Duk;Kim, Sang-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.297-302
    • /
    • 1990
  • Retention of mono-substituted phenols in reversed-phase liquid chromatography has been studied based on the linear solvation energy relationships using the solvatochromic mobile phase parameters, ${\pi}_m^{\ast}, {\alpha}_m$ and ${\beta}_m$. It has been observed that retention behavior of phenols in RPLC were well represented by regression equations vs. solvatochromic mobile phase parameters even though the equations may be incomplete due to lack of an explicit cavity term. Dependence of retention of monosubstituted phenols on the mobile phase properties were varied depending on the type of the organic cosolvent in the mobile phase, e.g., ${\beta}_m$ and {\alpha}_m$ in methanol-water system, but ${\pi}_m^{\ast} and ${\beta}_m$ in THF-water system. It has been suggested that retention of phenols in methanol-water system is controlled by the solvophobicity of the mobile phase.

A Study on the Development of Analytical Methods and Behaviors of Environmental Pollutants(III) : On-Line System for Preconcentration and Separation of Trace Phenols by HPLC (환경 오염물질의 정량법 개발과 거동에 관한 연구(III) : 미량 페놀류의 HPLC 정량을 위한 온 라인 농축)

  • Lee, Dai Woon;Kim, Jin Young;Park, Young Hun;Moon, Myeong Hee
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.33-39
    • /
    • 1994
  • The purpose on this study was to develop a new improved chromatographic method for determination of trace phenols from environmental waste water. The research was carried out with selected 8 phenols, and solid-phase extraction was employed as sample pretreatment method. The coupling of XAD-4 and Dowex $1{\times}8$ resin as preconcentration column increased the selectivities toward interferences coexisted in matrix. Automation was accomplished with on-line process of pretreatment and HPLC system. After elution of sample through XAD-4 column, phenols were adsorbed by dispersion force, then displaced from it by ACN basified, simultaneously and selectively readsorbed via anion exchange on Dowex $1{\times}8$. Dowex $1{\times}8$ column was washed by water. Phenols readsorbed were removed from Dowex $1{\times}8$ column by a minimum volumn of methanol containing HCl. Each pretreatment step was connected by switching valves and the eluate was directly on-line injected to obtain fast and reliable results into the HPLC. Recovery of phenols was greater than 90%. To examine utility of this method, analysis of phenols from laboratory waste water sample which was added some organic pollutants to find with phenols on environmental waste water were also accomplished without their interference effects.

  • PDF

Effect of Substituted Groups on the Retention of Monosubstituted Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀 일치환체들의 머무름에 미치는 치환기들의 영향)

  • Kim, Hun Ju;Lee, In Ho;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.562-569
    • /
    • 1994
  • The retention data of twenty one monosubstituted phenols in the eluent systems containing 30∼70% of methanol or acetonitrile as organic modifiers, on $ C_{18}$ and Phenyl columns were collected to investigate the effect of the substituted groups on the retention of phenols. The capacity factors of the solutes except amino phenols are greater on $ C_{18}$ than on Phenyl column. And all the solutes have shown greater capacity factors in methanol-water than that in acetonitrile-water as a mobile phase. Generally the elution order between meta and para isomers of monosubstituted phenols in consistent (p < m) regardless of the polarity of the substituted group. But the elution order between ortho and meta isomers of phenol varies with regard to the polarity of the substituted group. The retention of the monosubstituted phenols has been influenced by the interaction between the solute and unreacted silanol of columns as well as the interaction between the solute and $ C_{18}$ or phenyl group of columns. And then, the effect of unreacted silanol on the retention of the monosubstituted phenols is greater on $ C_{18}$ than on Phenyl column. And the greater hydrogen bonding acceptor basicity(${\beta}$) of the substituted group is, the greater this effect is. The relationship between the retention of the monosubstituted phenols and their parameters such as van der Waals volume(VWV) and hydrogen bonding acceptor basicity(${\beta}$) has been investigated. The good linearity has been observed in the plot log k' vs. (1.01VWV/100-1.84${\beta}$). In consequence, the retention of the monosubstituted phenols on $ C_{18}$ and Phenyl columns can be easily predicted by the parameter (1.01VWV/100-1.84${\beta}$).

  • PDF

Effect of pH on the sorption and desorption of chlorinated phenols using HDTMA-montmorillonite (HDTMA-몬모릴로나이트를 이용한 염화페놀류 화합물의 흡착 및 탈착시 pH의 영향)

  • 김지훈;김영규;신원식;김영훈;최상준;전영웅;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.19-22
    • /
    • 2001
  • The effects of pH on the sequential sorption/desorption of chlorinated phenols (2-chlorophenol, 2.4-dichlorophenol and 2,4,5-trichlorophenol) in HDTMA-montmorillonite were investigated by maintaining pH 4.85 or 9.15 in the sequential batch sorption and desorption experiments. The chlorinated phenols are hydrophobic ionizable orginic compounds; they can exist as either neutral (pH << pKa) or anionic (pH >> pKa) forms. Among the tested chlorinated phenols, 2,4,5-trichlorophenol showed the highest sorption affinity at pH 4.85 as expected by the $K_{ow}$ . Neutral speciation at pH 4.85 exhibited higher sorption affinity than anionic speciation at pH 9.15. Our results indicates that desorption of chlorinated phenols is strongly dependent on pH of the aqueous phase. Freundlich model was used to analyze the single-solute sorption/desorption results. The ideal adsorbed solution theory(IAST) was employed to predict the hi-solute sorption/desorption equilibria.

  • PDF

Microwave Mediated Protection of Hindered Phenols and Alcohols

  • Pothi, Tejas;Dawange, Mahesh;Chavan, Kamlesh;Sharma, Rajiv;Deka, Nabajyoti
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.706-711
    • /
    • 2012
  • Hindered phenols and alcohols were protected as their corresponding ethers using different alkylating agents in presence of KOH/DMSO under microwave irradiation. $$R-OH\;{KOH/DMSO,\;R^{\prime}-X,\;MW \\{\vec{10-15\;Mins,\;80%-90%\;Yield}}}\;R^{{/}^O{\backslash}}R^{\prime}$$.

Photocatalytic-Photooxidation of Halogen Derivatives of Phenols in Aqueous Solution (방향족 탄화수소 할로겐 유도체의 광촉매-광산화)

  • 김삼혁;권규혁;정오진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.233-240
    • /
    • 1999
  • Industrial waste which highly loaded by halogenide phenols was photooxidized by laboratory-scale photooxidation of these organic impurities in the presence of aerotropic and titaniumdioxide as photocatalyst. The disapperance of organic compounds was determined as a function of the irradiation time. Some contaminants such as 2-chlorophenol, 2-bromphenol, 3-bromphenol, 4-bromphenol, 2,4-dibromophenol and 2,6-dibromophenol were photodegraded separately to obtain information on the reaction rates, reactivities, and reaction mechanisms of the photooxidation, and on the stoichiometric correlation between organic reactant and inorganic products concentration in the course of the photocatalytic photoreaction.

  • PDF

Application of Ultrasounds for the Removal of Chlorobenzene and Chlorinated Phenols in Water (Chlorobenzene 및 Chlorinated Phenol류의 분해에 미치는 초음파의 응용)

  • 우영억;황규탁
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.35-43
    • /
    • 2000
  • Aqueous solutions of chlorobenzene and chlorinated phenols were exposed to 200kHz ultrasound with a power of $6.0W/\textrm{cm}^2$ per unit volume on sonochemical reactor under ambient temperature and pressure conditions. The concentration of chlorobenzene and chlorinated phenols decreased with ultrasound, indicating first-order kinetics. Degradation rate constants are calculated from the slope of plots. The order of the rate constants is as follows : 2-chlorphenol(2-CP)$\leq$ 4-chlorophenol(4-CP)<3-chlorophenol(3-CP)$5.63~9.96({\times}10^{-2})min^{-1}$ under argon. The degradation was suppressed by the addition of t-BuOH and the suppressed yield was agreed with their reactivity for hydroxy radical. The main products of these systems were formic acid, acetic acid, small amount of methane and inorganic carbon forms as carbon dioxide, carbon monoxide in sonolysis of chlorinated phenols, and also these results agreed with change of TOC.

  • PDF

α -Cyclodextrin Modified Screen Printed Graphite Electrodes for Detection of Phenols

  • Kim, Hwa-jeong;Jang, Seung-Cheol;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.427-431
    • /
    • 2002
  • A screen printed graphite electrode has been developed for a simple and sensitive determination of phenolic compounds in an aqueous solution. The electrode developed uses a simple and effective screen printing technique with ${\alpha}-Cyclodextrin({\alpha}-CD)$ modified graphite ink. Phenols were captured on the surface of the ${\alpha}-CD$ modified electrode through complex formation. The phenol/ ${\alpha}-CD$ complex was deposited and quantified electrochemically using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The optimization of the experimental parameters was performed in regard to electrode composition, pH, temperature, sample preconcentration time. Interferences from other organic compounds were investigated. The detection limit for phenols was 500 ${\pm}7$ nM for DPV, with the linear range of 0.5 ${\mu}M$ -25.0 ${\mu}M$ and 30 ${\pm}2$ nM for SWV, with the linear range of 30 nM - $50{\mu}M$, respectively.

Toxicity of Phenols to the Nematode Caenorhabditis elegans (Caenorhabditis elegans를 이용한 phenol류의 독성 연구)

  • Jung Kang-Sik;Hyun Sun-Hee;Choung Se-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.239-244
    • /
    • 2006
  • Caenorhabditis elegans(C. elegans) is a free-living soil nematode that commonly used as a biological model and recently, much work has been done using C. elegans as a toxicity model. To evaluate the acute toxicity of phenols to C. elegans, worms were subsequently exposed to nine different xenobiotics. This study described lethal toxicity, reproductive toxicity and movement inhibition using 2-propylphenol, 4-propylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 4-tert-butylphenol, 2-phenylphenol, 4-phenylphenol, nonylphenol and 4-dodecylphenol to C. elegans for 24 hr or 72 hr. We found that phenols used in this study were very toxic to C. elegans. The order of lethal toxicity, reproductive toxicity and movement inhibition is as follows. 4-propylphenol > 2-phenylphenol > 2-tert-butylphenol > 2-propylphenol > nonylphenol > B-tert-butylphenol > 4-dodefylphenol > 4-tert-butylphenol > 4-phenylphenol.