• Title/Summary/Keyword: phenology model

Search Result 59, Processing Time 0.021 seconds

The Effect of Winter Temperature on the Survival of Lantern Fly, Lycorma delicatula (Hemiptera: Fulgoridae) Eggs (동절기 온도가 꽃매미 월동 알의 생존율에 미치는 영향)

  • Lee, Young Su;Jang, Myoung Jun;Kim, Jin Young;Kim, Jun Ran
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.311-315
    • /
    • 2014
  • Lantern fly(Lycorma delicatula) is a major invasive pest that causes withering symptom of agricultural crops by sucking tree sap and sooty mold symptom by producing honeydew. This study was conducted to investigate the occurrence pattern of lantern fly in grape orchards in Gyeonggi area and the effect of winter temperature on L. delicatula egg survival during 2010 to 2013. In Gyeonggi areas, overwintered L. delicatula eggs began to hatch from early May and nymphs peaked in mid May. Adults emerged from late July and laid eggs until early November. The survival of L. delicatula eggs during overwintering was largely affected by winter temperatures. The relationship between the number of days below a threshold temperature (x) in January and the survival rate of overwintering L. delicatula eggs (y) was using linear regression model. The best model selected by the lowest RSS (residual sum of square) between predicted and actual survival was y = -1.0486 x + 94.496 ($R^2=0.7067$) with $-11^{\circ}C$ of threshold temperature. These results should be helpful to conduct L. delicatula management programs, since the results provided relivable prediction for the winter survival of L. delicatula eggs and the phenology of egg hatch in the spring.

A Prospect on the Changes in Short-term Cold Hardiness in "Campbell Early" Grapevine under the Future Warmer Winter in South Korea (남한의 겨울기온 상승 예측에 따른 포도 "캠벨얼리" 품종의 단기 내동성 변화 전망)

  • Chung, U-Ran;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Warming trends during winter seasons in East Asian regions are expected to accelerate in the future according to the climate projection by the Inter-governmental Panel on Climate Change (IPCC). Warmer winters may affect short-term cold hardiness of deciduous fruit trees, and yet phenological observations are scant compared to long-term climate records in the regions. Dormancy depth, which can be estimated by daily temperature, is expected to serve as a reasonable proxy for physiological tolerance of flowering buds to low temperature in winter. In order to delineate the geographical pattern of short-term cold hardiness in grapevines, a selected dormancy depth model was parameterized for "Campbell Early", the major cultivar in South Korea. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HDDTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations and a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and site elevation). To generate relevant datasets for climatological normal years in the future, we combined a 25km-resolution, 2011-2100 temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 scenario) with the 1971-2000 HD-DTM. The dormancy depth model was run with the gridded datasets to estimate geographical pattern of change in the cold-hardiness period (the number of days between endo- and forced dormancy release) across South Korea for the normal years (1971-2000, 2011-2040, 2041-2070, and 2071-2100). Results showed that the cold-hardiness zone with 60 days or longer cold-tolerant period would diminish from 58% of the total land area of South Korea in 1971-2000 to 40% in 2011-2040, 14% in 2041-2070, and less than 3% in 2071-2100. This method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

Calibration of cultivar parameters for cv. Shindongjin for a rice growth model using the observation data in a low quality (저품질 관측자료를 사용한 벼 생육 모델의 신동진 품종모수 추정)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.42-54
    • /
    • 2019
  • Crop models depend on a large number of input parameters including the cultivar parameters that represent the genetic characteristics of a given cultivar. The cultivar parameters have been estimated using high quality data for crop growth, which require considerable costs and efforts. The objective of this study was to examine the feasibility of using low quality data for the parameter estimation. In the present study, the cultivar parameters for cv. Shindongjin were estimated using the data obtained from the report of new cultivars development and research from 2005 to 2016. The root mean square errors (RMSE) of the heading dates were less than 3 days when the parameters associated with phenology were estimated. In contrast, the coefficient of determination for yield tended to be less than 0.1. The large errors incurred by the fact that no growth data collected over a season was used for parameter estimation. This suggests that detailed observation data needs to be prepared for parameter calibration, which would be aided by remote sensing approaches. The occurrence of natural disasters during a growing season has to be considered because crop models cannot take into account the effects of those events. Still, our results provide a reasonable range for the parameters, which could be used to set the boundary of a given parameter for cultivars similar to cv. Shindongjin in further studies.

Prediction Model for Flowering date of Rhododendron mucronulatum Turcz. using a Plant Phenology Model (생물계절모형을 이용한 진달래 개화 예상시기 모형 연구)

  • Sung-Tae Yu;Byung-Do Kim;Hyeon-Ho Park;Jin-Yeong Baek;Hye-Yeon Kwon;Myung-Hoon Yi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.31-31
    • /
    • 2020
  • 본 연구는 대표적인 봄 꽃 식물인 진달래(Rhododendron mucronulatum Turcz.)의 개화시기를 예측하기 위해 지난 9년간(2011년-2019년) 주왕산 지역에 생육하는 진달래의 식물계절자료(파열·개화·개엽·만개·낙엽)와 기상자료(일평균기온·일최고기온·일최저기온)를 토대로 이탈리아 생물기상연구소(IBMET)의 Chill Day 개화 예측모형인 생물계절모형을 실시하였다. 생물계절모형에 의한 예상 발아일간 편차의 제곱을 최소로 하는 조합은 기준온도 5℃, 저온요구량과 가온요구량은 97.94로 나타났다. 즉, 휴면해제일로부터 기준온도 5℃로 Chill Day를 누적시켜 97.94에 도달하는 날짜가 낙엽~내생휴면해제일이자 내생휴면해제일~발아기간까지의 값이며, 내생휴면해제일을 기점으로 개화일까지 102.93이 개화에 필요한 가온량으로 나타났다. 2011년부터 2019년까지 개화예상일을 기상청 회귀모형을 실관측기온에 적용한 결과 오차는 MAE=1.44이며, 생물계절모형을 적용할 경우 오차는 MAE=1.39, 기준온도 5℃일 경우 MAE=4.23, 기준온도 6℃일 경우 MAE=5.47, 기준온도 7℃일 경우 MAE=5.05로 나타나 생물계절에 의한 관측과 기상청의 회귀모형이 가장 유사한 것으로 나타났다. 가장 최근인 2018년과 2019년의 기상청 회귀모형와 생물계절모형의 개화 예측일을 비교한 결과, 2018년의 경우 청송지역의 진달래는 기상청 회귀모형에서 3월 30일 전후로 개화를 예상하였고 생물계절모형은 기준온도 5℃에 적용할 경우 내생휴면일에 가장 근접한 날은 3월 26일이였으며 이를 기준으로 가온량의 합이 102.93에 가깝게 되는 날인 4월 2일을 전후로 개화를 예측하였다. 실제 청송 주왕산의 진달래는 4월 3일에 개화를 시작하여 생물계절모형과 매우 유사함을 확인하였다. 2019년의 경우 청송지역의 진달래는 기상청 회귀모형에서 3월 25일 전후로 개화를 예상하였고 생물계절모형은 기준온도 5℃에 적용할 경우 내생휴면일에 가장 근접한 날은 3월 8일이였으며 이를 기준으로 가온량의 합이 102.93에 가깝게 되는 날인 3월 29일을 전후로 개화를 예측하였다. 실제 청송 주왕산의 진달래는 4월 5일에 개화를 시작하여 오히려 생물계절모형과 더욱 유사함을 확인하였다.

  • PDF

Recent Changes in Bloom Dates of Robinia pseudoacacia and Bloom Date Predictions Using a Process-Based Model in South Korea (최근 12년간 아까시나무 만개일의 변화와 과정기반모형을 활용한 지역별 만개일 예측)

  • Kim, Sukyung;Kim, Tae Kyung;Yoon, Sukhee;Jang, Keunchang;Lim, Hyemin;Lee, Wi Young;Won, Myoungsoo;Lim, Jong-Hwan;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.322-340
    • /
    • 2021
  • Due to climate change and its consequential spring temperature rise, flowering time of Robinia pseudoacacia has advanced and a simultaneous blooming phenomenon occurred in different regions in South Korea. These changes in flowering time became a major crisis in the domestic beekeeping industry and the demand for accurate prediction of flowering time for R. pseudoacacia is increasing. In this study, we developed and compared performance of four different models predicting flowering time of R. pseudoacacia for the entire country: a Single Model for the country (SM), Modified Single Model (MSM) using correction factors derived from SM, Group Model (GM) estimating parameters for each region, and Local Model (LM) estimating parameters for each site. To achieve this goal, the bloom date data observed at 26 points across the country for the past 12 years (2006-2017) and daily temperature data were used. As a result, bloom dates for the north central region, where spring temperature increase was more than two-fold higher than southern regions, have advanced and the differences compared with the southwest region decreased by 0.7098 days per year (p-value=0.0417). Model comparisons showed MSM and LM performed better than the other models, as shown by 24% and 15% lower RMSE than SM, respectively. Furthermore, validation with 16 additional sites for 4 years revealed co-krigging of LM showed better performance than expansion of MSM for the entire nation (RMSE: p-value=0.0118, Bias: p-value=0.0471). This study improved predictions of bloom dates for R. pseudoacacia and proposed methods for reliable expansion to the entire nation.

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

Population Trends and temperature-Dependent Development of Pear Psylla, Cacopsylla pyricola(Foerster) (Homoptera: Psyllidae) (꼬마배나무이(Cacopsylla pyricola(Foerster)) 발생소장 및 온도별 발육기간)

  • 김동순;조명래;전흥용;임명순;이준호
    • Korean journal of applied entomology
    • /
    • v.39 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • Two Psyllidae species of Cacopsylla pyricola (Foerster) and C. pyrisuga (Foerster)damaging pear trees have been reported in Korea. However, their ecological characteristics and damagepatterns have not been evaluated yet. To establish basic control measures of C. pyricola, field phenology,overwintering ecology, seasonal fluctuation and temperature-dependent development of C. pyricola wereexamined. C. pyricola overwintered under the bark scale of pear trees as winter form adults and theymoved to fruiting twigs from mid-February. Honeydew produced by C. pyricola nymphs and adults asthey feed caused serious black sooty mold on leaves and fruits. The seasonal occurrence of C. pyricolawas different every year. In 1993, characterized by cold temperature and heavy precipitation, C. pyricolapopulation was maintained highly during growing season. However, the population was decreased rapidlyfrom early July in 1994, year of hot and dry weather condition. In 1995, year of average temperature, thedensity of C. pyricola population was decreased during hot months of July and August, and rebuilt up inSeptember and October. The development periods of C. pyricola eggs were 13.33 days at 15"C, 9.32 daysat 20$^{\circ}$C, 7.82 days at 25"C, 6.60 days at 30$^{\circ}$C, and 7.75 days at 35$^{\circ}$C. The development periods ofnymphs were 33.75 days at 15OC, 23.77 days at 20$^{\circ}$C, 15.21 days at 25"C, and 17.40 days at 30$^{\circ}$C. Theirdevelopment periods and mortalities were increased in higher temperatures. The parameters of nonlineardevelopment model, Weibull and linear development models of Cacopsylla pyricola were estimated.models of Cacopsylla pyricola were estimated.

  • PDF

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.