• Title/Summary/Keyword: phenol wastewater

Search Result 123, Processing Time 0.025 seconds

Decrease of Activity of Estrogenic Chemicals by Chlorination (염소산화에 의한 에스트로겐성 화학물질의 활성저감)

  • Lee, Byoung-cheun;Lee, Sang-hyup;Kamei, Tasuku;Magara, Yasumoto
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.98-105
    • /
    • 2005
  • The effects of chlorination on the elimination of three estrogenic chemicals such as $17{\beta}$-estradiol (E2), nonylphenol (NP) and bis-phenol A (BPA) were investigated using yeast two-hybrid assay (YTA), estrogen receptor competition assay (ER-CA), and high-performance liquid chromatography/mass spectrometer (LC/MS). Results of YTA, ECA and the analysis of LC/MS indicated that the estrogenic activity of above mentioned three endocrine disruptors were significantly reduced as the result of chlorination. The decrease in estrogenic activity paralleled with decrease in estrogenic chemicals under the influence of free chlorine. One common characteristic of estrogenic chemicals is the presence of a phenolic ring. Considering that a phenolic ring is likely to undergo some sort of transformation in aqueous chlorination solution, the above mentioned results may be applied to the rest of the other estrogenic chemicals in natural waters.

Separation of Organic Pollutants by Nondispersive Membrane-Solvent Extraction (비분산 막-용매추출에 의한 유기오염물의 분리)

  • 유홍진;한성록
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.174-185
    • /
    • 2004
  • Organic pollutants (Phenol, 2-Chlorophenol, Nitrobenzene) were separated from wastewater by nondispersive membrane solvent extraction, using a microporous hydrophobic hollow fiber module. The system was operated countercurrently and cocurrently with the aqueous phase flowing through the fiber lumens and the solvent flowing through the shell side. The distribution coefficients of several solvents (MIBK, IPAc, Hexane) were examined and MIBK was selected as an extracting solvent. Separation efficiency of countercurrent flow method was better than that of cocurrent flow method. Also, the overall mass transfer coefficients were determined.

  • PDF

Effect of Chlorine Dioxide on the treatment of Drinking Water Supply (이산화염소($CIO_2$)의 상수정수처리 효과에 관하여)

  • Chung, Yong;Lee, Bo-Young
    • 수도
    • /
    • s.44
    • /
    • pp.6-12
    • /
    • 1988
  • This study was performed to measure the elimination effects of chlorine dioxide on phenol compounds, trihalomethanes (THMs) and algae in drinking water supply. The raw and chlorinated water were treated with 0.5ppm of chlorine dioxide. The phenols contained 0.052mg/1, 0.019mg/1 of raw and treatedwater was absolutely destroyed. The THMs was reduced to 50-60% of the concentration and the algae was inhibited to about 50% of the growth.

  • PDF

Degradation of Phenol by "TiO2 Ceramic Membrane+UV+H2O2" AOP ("TiO2 촉매막+UV+H2O2" 고도산화법(AOP)을 이용한 페놀 분해)

  • Choung, Youn Kyoo;Kim, Jin Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.645-654
    • /
    • 1994
  • Photocatalytic oxidation conditions of reactant recirculation flow rate 275 mL/min, aeration rate 2 LPM and $UV+TiO_2+H_2O_2$(500 mg/L) proved to be appropriate for water including organic materials treatment. With increasing turbidity and suspended solids concentration, at turbidity 10 NTU-suspended solids concentration 29 mg/L the phenol degradation efficiency increased, which in turn decreased at turbidity 50 NTU-suspended solids concentration 170 mg/L, however no significant differences were observed, demonstrating similar results with those obtained at zero turbidity and suspended solids concentration. The degradation efficiency of phenol decreased with increasing influent phenol concentrations. The $UV+TiO_2+H_2O_2$ photocatalytic advanced oxidation process conducted is considered to be possibly applied to the drinking water treatment, and the post-treatment process of biological wastewater treatment.

  • PDF

Isolation and identification of a phenol-degrading bacterium from the sewage sludge (하수슬러지로부터 페놀분해세균의 분리 및 동정에 관한 연구)

  • Kim, Young-Jun;Lee, Suk-Won;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • A bacterium which grow on phenol as an only carbon and energy source was isolated from the sewage sludge at Nangi municipal wastewater treatment plant in Seoul. This bacterium was found to be a Gram negative rod with high motility, and well grew on 0.05%, 0.1%, and 0.15% of phenol. No matching strain was found from the result of the BBL test. Phylogenetic analysis of the strain by comparison of the 16s-rDNA has revealed that this bacterium has 99% of similarity with Stenotrophomonas maltophilia strain of Xanthomonas group, which belongs t the Gamma (${\gamma}$) subdivision of Proteobacteria. This strain has also shown 98% of similarity with nitrogen fixing bacterium MAGDE3 and Pseudomonas cissicola strain, and 97% of similarity with Stenotrophomonas sp. LMG198 and Xanthomonas cucurbitae.

  • PDF

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C.;Viero, Aline F.;Dias, Ana Carolina F.;Andreote, Fernando D.;Jesus, Ederson C.;De Paula, Sergio O.;Torres, Ana Paula R.;Santiago, Vania M.J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

Study on characteristics of specific hazardous substances in the industrial wastewater effluent (사업장 방류수 중 특정수질유해물질 배출 특성 연구)

  • Kim, Seungho;Choi, Youngseop;Kim, Yunhee;Kim, Jongmin;Chang, Gilsik;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.114-125
    • /
    • 2016
  • In this study, 165 wastewater discharge facilities in 10 business types were investigated with regard to 24 specific hazardous substances that included heavy metals, VOCs, CN, and phenol in the Gwangju city. Cu in the range from from 0.008 to 35.420 mg/L was detected in all business types and the detection rate was 46.8 %. Other heavy metals, such as Cd, As, Hg, Pb, and Cr+6 were detected as well. However, their detection rates ranged between 0.6 and 1.8 %. CN and phenol were detected in one and five facilities, respectively. 12 species of VOCs were detected: chloroform 80.6 % (0.42 to 81.60 μg/L), benzene 16.4 % (1.49 to 3.31 μg/L), trichloroethylene 11.5 % (1.78 to 6.02 μg/L), 1,1-dichloroethylene 10.3 % (1.23 to 5.89 μg/L), and dichloromethane 8.5 % (0.28 to 968.86 μg/L) in the detection rate order. The concentration of VOCs was detected in trace amounts, except for dichloromethane that exceeded the effluent quality standard in three business types, namely, metal manufacturing, food industry, and car washing facility. Chloroform was detected in all business types, where 24.88 μg/L were detected in the laundry business and 53.41 μg/L in the water supply business; the mean concentration of chloroform in these two business types was higher than elsewhere. Therefore, for the disposal of non-degradable specific hazardous substances in industrial wastewater, it is necessary to introduce physical and chemical processes, such as activated carbon adsorption, fenton oxidation, ozone treatment, as well as photocatalyst and the UV radiation.

Effect of Two-step Surface Modification of Activated Carbon on the Adsorption Characteristics of Metal Ions in Wastewater II. Dynamic Adsorption

  • Lee, Jae-Kwang;Park, Geun-Il;Ryu, Seung-Kon;Ki, Joon-Hyung
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 2003
  • Based on the previous results of the equilibrium and batch adsorptions, the removal efficiency of the two-step surface-modified activated carbon ($2^{nd}AC$) for heavy metal ions such as Pb, Cd, and Cr in fixed column was evaluated by comparing with that of the as-received activated carbon (AC) and the first surface-modified activated carbon ($1^{st}AC$). The order of metal removal efficiency was found as $2^{nd}AC$ > $1^{st}AC$ $\gg$ AC, and the efficiency of the $2^{nd}AC$ maintained over 98% from the each metal solution. Increase of the removal efficiency by the second surface modification was contributed to maintain favorable pH condition of bulk solution during adsorption process. The removal of the heavy metals on the $2^{nd}AC$ was selective with Pb being removed in preference to Cr and Cd in multicomponent solutions and slightly influenced by phenol as the organic material.

  • PDF

Characterization of Biodegradation of Highly Concentrated Phenol by Rhodococcus sp. EL-GT (Rhodococcus sp. EL-GT에 의한 고농도 페놀의 분해 특성)

  • Park, Geun-Tae;Cha, Mi-Sun;Nam, Gui-Sook;Cho, Sun-Ja;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.971-977
    • /
    • 2002
  • The isolated strain, Rhodococcus sp. EL-GT was able to degrade high phenol concentrations up to 10 mM within 24 hours in the medium consisting of 5.3 mM $KH_2PO_4$. 95 mM $Na_2HPO_4$, 18mM $NH_4NO_3$, 1 mM $MgSO_4{\cdot}7H_2O$,\;50{\mu}M CaCl_2$,\;0.5 {\mu}M FeCl_3$, initial pH 8.0, temperature $30^{\circ}C$ in rotary shaker at 200 rpm. This strain was good cell growth and phenol degradation in the alkaline pH range range, and the highest in the pH range of 7 to 9. The microorganism was able to grow at the various chlorinated phenols, benzene, toluene, and bunker-C oil. As Rhodococcus sp. EL-GT was good capable of attachment on the acryl media, it would be used as microorganism to consist of biofilm in wastewater treatment.

Characteristic of wastewater treatment using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 폐수처리특성)

  • Lee, Eun-Ju;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.795-798
    • /
    • 2003
  • Toxic organics are of great environmental concern primarily because they are toxic to mammals and birds, and are relatively soluble in water to contaminate surface water and groundwater. In this study, the decomposition of phenol, a widely used organic, in aqueous solutions by Boron doped diamond(BDD) electrode was examined. Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond (BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work. we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte. Decomposition of phenol concentration in the reaction solution by photolytic ozonation( $UV/O_3$) was analyzed by HPLC epuipped with a UV detector.

  • PDF