• Title/Summary/Keyword: phenol removal

Search Result 142, Processing Time 0.025 seconds

Removal of Phenol Loaded with Activated Carbon by Potentiostatic Method (정전위전해에 의한 활성탄에 함유된 페놀 제거)

  • 김성우;박승조
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.18-23
    • /
    • 2001
  • Air pollutants, phenol was generated in case of thermal regeneration of used activated carbon loaded with phenol and because of this problem, removal process of phenol were studied. Electrolytic oxidation of samples, used S.company granular activated carbon (WS-GAC), used C.company granular activated carbon (WC-GAC) and used L.company granular activated carbon (WL-GAC) loaded with phenol carried out by potentiostatic method in this study. In case of experiment was to come into operation in condition of samples containing 100 mg/g phenol, supporting electrolyte was 1.0% sodium chloride solution, Ti-Ir (10$\times$10$\textrm{cm}^2$) electrode and electrode distance was 2 cm, current density was $1.25 A/dm^2$, Obtained from the results of electrolytic oxidation experiments were not detected residual phenol. And then we knew about reaction time of electrolytic oxidation, current density, concentration of supporting electrolyte and electrode and electrode distance were 60 minutes, 1.25 A/dm$^2$, 1.0%, 2 cm.

  • PDF

Reaction Characteristics and Kinetics for Treatment of Wastewater Containing Phenol (Phenol 함유 폐수의 처리를 위한 반응 특성과 속도론)

  • Kang, Sun-Tae;Kim, Jeong-Mog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 1997
  • Wastewater containing phenol was treated using Pseudomonas sp. B3 in continuous reactor, reaction characteristics and kinetics according to variation of volumetric loading rate in continuous reactor were studied. The removal efficiencies of phenol were more than 99% at the whole range of experiment, and those of COD were 97% at the volumetric loading rate, $0.96kg/m^3{\cdot}d$ and 88% at $3.0kg/m^3{\cdot}d$, respectively. Kinetics constants of $q_m$, $K_s$, Y and $K_d$ were obtained 0.901 l/d, 0.620mg/l, 0.659 and 0.219 l/d, respectively. As compared with to constants of standard activated sludge process, these constants were remarkably different because of toxicity and inhibition of phenol to microbes. And also, kinetics constants of oxygen utilization, a, and b, were shown 0.384 kg $O_2/kg$ phenol and 0.029 l/d.

  • PDF

Soil Washing Potential of Biosurfactant in Soil Remediation (Biosurfactant를 이용한 환경수복에서의 토양세척능)

  • 최영국;김민길;이수복;이가연;이대희;권수한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.95-98
    • /
    • 1999
  • The goal of present study is to evaluate the potential of soil washing for removing metal contaminants from a contaminated soil. Remediation of a soil contaminated with copper, cadmium and phenol were performed by a soil washing using a biosurfactant. The removal of copper, cadmium and phenol from soil (sandy, kaoline, mixed one) was evaluated as a function of biosurfactant (wt %) concentration in the batch process. The results showed that overall rejection coefficient for copper, cadmium and phenol were grater than 50 %, 25 %, respectively.

  • PDF

Phenolic Wastewater Treatment by a Mixed Culture GE2 Immobilized on Activated Carbon

  • Oh, Hee-Mock;Ku, Young-Hwan;Ahn, Keuk-Hyon;Kwon, Gi-Seok;Kho, Yung-Hee;Mheen, Tae-Ick;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.116-119
    • /
    • 1996
  • The biological treatment by a mixed culture GE2 immobilized on activated carbon was investigated with a phenolic resin industrial wastewater containing 41,000 mg/l of phenol and 2,800 mg/l of formaldehyde. At a dilution of 20 times with aerated tap water, influent and effluent $COD_{Mn}$ were 4,587 mg/l and 46 mg/l, that is, $COD_{Mn}$ removal efficiency was 99.0%. At this time, phenol and formaldehyde con-centration of the effluent were 1.24 and 6.80 mg/l, indicating removal efficiencies of 99.9 and 94.1%, respectively.

  • PDF

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Characteristics and Phenol Wastewater Treatment of Aerobic Biofilm Reactor Used Rhodococcus sp. EL-GT and Sludge (Rhodococcus sp. EL-GT와 Sludge를 이응한 호기성 생물막 반응기의 특성 및 페놀 처리)

  • Park, Geun-Tae;Won, Seong-Nae;Cho, Sun-Ja;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.553-560
    • /
    • 2002
  • The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6 ~ 9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.

Effects of Growth Substrates on Cometabolic Biodegradation of Trichloroethylene by Burkholderia cepacia G4 (Burkholderia cepacia G4에 의한 트리클로로에틸렌의 공동대사적 분해에 미치는 성장기질의 영향)

  • 예병대;박성훈;이은열
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.474-481
    • /
    • 2000
  • The effects of growth substrates such as toluene and phenol on cometabolic biodegradation of trichloroethylene (TCE) by Burkholderia cepacia G4 were investigated. The dual effects of primary substrate on TCE biodegradation, stimulatory effects of toluene and phenol at low concentrations (0.5∼2 ppm & 0.1∼0.5 ppm, respectively) and a competitive inhibition at high concentration, were observed in batch experiments. These stimulatory effects of toluene and phenol were found to be due to the increments in the amount of reducing power like NADH which could be generated during the assimilation of toluene and phenol as the carbon and energy source. The efficiency of TCE biodegradation in trickling biofilm reactor (TBR) could be also enhanced up to the TCE removal efficiency of 58.1% by the supply of appropriate amounts of phenol (0.94∼4.7 ppm).

  • PDF

Removal of endocrine disruptive compounds using dimensionally stable anode (DSA) (불용성 전극(DSA)을 이용한 내분비계 장애물질 제거)

  • Kim, Dong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1368-1373
    • /
    • 2008
  • An electrochemical reactor was designed and operated to treat the solution containing endocrine disruptive compounds such as phenol and bisphenol A. An experiment involving the electrochemical oxidation of bisphenol A was performed with the use of a dimensionally stable anode (DSA). The apparent current, conductivity, and the gap between cathode and anode were selected as design parameters. The phenol removal rate increased with an increase in apparent current. The bisphenol A removal rate increased with an increase in apparent current efficiency. An increase in the conductivity also led to an increase in the rate of removal of bisphenol A. The gap between cathode and anode did not affect the bisphenol A removal rate or the cathodic current efficiency.

Study on Pollutant Characteristics of Tunnel Cleaning Wastewater and Removal Characteristics of the Pollutants via Settling and Adsorption (터널 세척 폐수 특성 및 분리.흡착 방식에 따른 오염물질 저감 연구)

  • Park, Sang-Woo;Choi, Young-Hwa;Oh, Je-Ill
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.75-82
    • /
    • 2007
  • Washed wastewater generated from the intermittent cleaning process of the three tunnel sites located in the Seoul area showed high concentrations of SS, $COD_{Cr}$, T-N, $NH_3-N$, $NO_3-N$, Zn, Cu, Cr(+6), Mn, Mg, Phenol, $CN^-$ and E-Coli based on the water quality analysis. These characteristics of the deteriorative wastewater depend on the sampling method, cleaning frequency, released amount of washing water, inner material of tunnel wall, traffic volume, and type of drainage systems. Gravitational separation experiment of SS with collected tunnel wastewater showed considerable removal of pollutants such as 80% of $COD_{Cr}$, 30% of T-N and 90% of T-P simultaneously. GAC isotherm test was conducted to remove dissolved portion of the pollutants, and resulted in high removal efficiencies above 80% of $COD_{Cr}$, T-N, Zn, Cu, Mn, Phenol, CN in the experimental condition of GAC dosage of $50g/1/{\ell}$.

  • PDF

Biodegradation of Benzne,Toluene, and Phenol by a Mixed Culture in Semicontinuous Culture (반연속배양의 혼합균주에 의한 Benzene, Toluene 및 Phenol 혼합물 분해)

  • Oh, Hee-Mock;Kim, Seong-Bin;Lee, Chang-Ho;Suh, Hyun-Hyo;Lee, Moon-Ho;Kho, Yung-Hee;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.415-422
    • /
    • 1994
  • The biodegradation of aromatic compounds by a mixed culture GE1 was investigated in an artificial wastewater containing 250 mg/l of benzene, toluene, and phenol in semicontinuous culture. In the control group (no strains) with an aeration rate of 75 ml/l/min, 37% of phenol and 83% of benzene were volatilized during early 24 hrs and toluene was disappeared from the medium within 12 hrs. The biodegradation of benzene and toluene was effective in SB (strains + biofilm) treatment, while phenol was degraded more quickly in SG (strains + glucose) treatment including glucose as an additional carbon source. aromatic compounds added at a concentration of 250 mg/l were completely removed by SG treatment after 16 hrs or 32 hrs, respectively. The removal rate of COD was high as much as 80 mg/l/h in SG treatment during early period, but COD revealed a stable value of 116~140 mg/l after 12 hrs caused by increased biomass. Therefore, it is concluded that the mixed GE1 could be used for the wastewater treatment including aromatic compounds such as benzene, toluene, and phenol.

  • PDF