• 제목/요약/키워드: phenol degradation

검색결과 175건 처리시간 0.021초

비이온 계면활성제의 주입과 비주입 할 경우 기체 상태의 TEC와 PEC 분해 (Gaseous TCE and PCE Degradation with or without a Nonionic Surfactant)

  • Kim, Jong-O
    • 한국대기환경학회지
    • /
    • 제13권1호
    • /
    • pp.31-40
    • /
    • 1997
  • 본 연구는 페놀산화미생물을 주입한 입상활성탄 biofilter를 이용하여, 기체 상태의 트리클로로에틸렌(TCE)과 테트라클로로에틸렌(PCE)을 생분해시키는 것과 임계미셀농도(CMC)값 이하에서의 계면활성제가 TCE와 PCE의 처리효율에 미치는 영향을 조사하기 위해 수행하였다. 기체 상태의 TCE와 PCE를 처리하기 위하여, 두 개의 개별적 biofilter를 체류시간이 1.5~7분이 되게 운전하였다. 기체 TCE는 체류시간 7분과 평균 유입농도 85ppm에서 100% 처리되는 것으로 조사되었다. 그리고, 기체 PCE는 체류시간 4~7분과 평균 유입농도 47~84ppm에서 100% 처리되었다. 활성탄에 의한 흡착은 TCE와 PCE 처리에 영향을 적게 준 것으로 나타났다. 기체 상태의 TCE와 PCE의 transformation yield값은 체류시간에 따라 각각 8~48g of TCE/g of phenol과 6~25g of PCE/g of phenol으로 조사되었으며, 액체 상태의 TCE 값과 비교하면 1~2차수 작게 나타났다. Biofilter에 계면활성제의 농도를 5~50mg/L 이하로 주입한 결과, 기체 상태의 TCE와 PCE의 처리효율은 계면활성제를 주입하지 않을 때 보다 약간 증가하였으나, 큰 차이를 발견할 수는 없었다.

  • PDF

Study on Phenol Degradation by Rhodococcus sp. EL-43P

  • Won, Seong-Nae;Lee, Hee-Sook;Kim, Joon-Gu;Lee, Geon;Lee, Sang-Joon
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1998년도 한국생물과학협회 학술발표대회
    • /
    • pp.171.2-171
    • /
    • 1998
  • No Abstract, See Full Text

  • PDF

퀴놀린-페놀 혼합용액의 습식산화 (Wet Co-Oxidation of Quinoline and Phenol)

  • 류승훈;윤왕래;서일순
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.486-492
    • /
    • 2009
  • 퀴놀린 습식산화는 $225^{\circ}C$$250^{\circ}C$에서 수행되었다. $250^{\circ}C$에서의 습식산화에서 퀴놀린은 30 min 내에 완전히 분해되었으며 총 유기탄소(TOC)는 120 min 내에 63% 감소하였다. 반면에 $225^{\circ}C$에서의 습식산화에서는 TOC는 240 min 동안 13% 감소하였다. 퀴놀린 산화 중 니코틴산과 초산이 주 중간생성물로 생성되었다. 균일촉매 $CuSO_4$ 또는 쉽게 산화되는 페놀을 첨가하여 온화한 반응조건인 $200^{\circ}C$에서의 퀴놀린 습식산화도 수행하였다. $CuSO_4$를 0.20 g/L 사용한 촉매 습식산화는 $250^{\circ}C$ 습식산화에서와 비슷한 퀴놀린 및 TOC 제거속도를 보였다. $200^{\circ}C$에서의 퀴놀린과 페놀 혼합물 습식산화에서는 퀴놀린과 페놀의 분해 개시에 필요한 자유라디칼이 생성되는 유도기간이 나타났다. 주어진 퀴놀린 초기농도에서 페놀 초기농도를 증가시킴에 따라, 퀴놀린과 페놀 분해를 위한 유도기간은 짧아졌고 습식산화 180 min 동안의 TOC 감소율은 60%에서 75%까지 증가하였다. 유도기간의 감소율은 퀴놀린에 대한 페놀 초기농도비를 증가시킴에 따라 감소하였다. 반면에 퀴놀린과 페놀 혼합물 습식산화에서의 페놀분해는 페놀 습식산화에서 보다 긴 유도기간을 필요로 하였고 서서히 진행되었다.

Radical Scavenging Activity of Grape-Seed Extracts Prepared from Different Solvents

  • Chnng, Hae-Kyung;Choi, Chang-Sook;Park, Won-Jong;Kang, Myung-Hwa
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.715-721
    • /
    • 2005
  • Antioxidant activities of grape seeds extracted with various solvents were evaluated by measuring total phenol and flavanol contents, thiobarbituric acid reactive substances (TBARS) following lipid peroxidation, 2-deoxyribose degradation, SOD-like activity, 2,2'-azino-bis(3-ethylbenzthizaoline-6-sulfonic acid (ABTS) radical-scavenging ability, and electron-donating ability using 1,1-diphenyl-2-pycryl hydrazil (DPPH) method. Total phenol and flavanol contents of mixted-solvent extracts were higher than those of single-solvent extracts, with the mixing ratio of 17:3 (ethyl acetate: water) (EW) showed the highest contents. Antioxidant activities (%) of TBARS following phosphatidylcholine peroxidation were 14, 45, 45, 7, 4, 25, 21, 23, and 20% for ascorbic acid (AA), butylated hyroxytoluene (BHT), quercetin (Q), acetone extract (AT), ethyl acetate (EA) extract, methanol (MeOH) extract, 4:1 (EA) extract, 9:1 (EW)-extract, and 17:3 EW extract, respectively. Antioxidant activities for 2-deoxyribose degradation were 5, 80, 87, 78, 56, 73, 64, 60, and 75% in AA, BHT, Q, AT, EA, MeOH extract, 4:1 EW extract, 9:1 EW extract, and 17:3 EW extract, respectively. MeOH grape seed extract showed distinctly stronger electron-donating activity than other solvent extracts.

Catalytic Properties of Ti-HMS with High Titanium Loadings

  • Jang, S.H.;Kim, M.J.;Ko, J.R.;Ahn, W.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1214-1218
    • /
    • 2005
  • Ti-HMS samples in which titanium species exist in various forms of isolated tetrahedral state, finely dispersed $TiO_2$ cluster, and some in extra-framework anatase phase were prepared via a direct synthesis route using dodecylamine (DDS) as a structure directing agent by systematically varying the titanium loadings between 2 and 50 mol% Ti/(Ti+Si) in substrate composition. Physicochemical properties of the materials were evaluated using XRD, SEM/TEM, N2 adsorption, UV-vis and XANES spectroscopies. Catalytic properties of Ti-HMS in cyclohexene and 2,6-di-tert-butyl phenol (2,6-DTBP) oxidation using aqueous $H_2O_2$, and vapor phase photocatalytic degradation of acetaldehyde were evaluated. High $H_2O_2$ selectivity was obtained in cyclohexene oxidation, and cyclohexene conversion was found primarily dependent on the amount of tetrahedrally coordinated Ti sites. For bulky 2,6-DTBP oxidation and photocatalytic oxidation of acetaldehyde, on the other hand, conversions were found dependent on the total amount of Ti sites and maintaining an uniform mesoporous structure in the catalysts was not critical for efficient catalysis.

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

Micrococcus sp. MS-64K에 의한 Trichloroethylene의 분해특성 및 Kinetics (Biodegradation and Kinetics of Trichloroethylene by Micrococcus sp. MS-64K)

  • 김종수;박근태
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.481-488
    • /
    • 1997
  • Microorganisms capable of degrading trlchloroethylene(TCEI using phenol as a induction substrate were isolated from industrial effluents and soil. The strain MS-64K which had the highest blodegradablllty was identified as the genus Micrococcus. The optimal conditions of medium for the growth and blodegadatlon of trlchloroethylene were observed as follows; the initial pH 7.0, trlchloroethylene 1, 000ppm as the carbon source, 0.2% ${(NH_4)}_2SO_4$, as the nitrogen source. respectively. Lag period and degradation time on optimal medium were shorter than those on Isolation medium. Growth on the optimal medium was Increased. Addition of 0.1% Triton X-100 Increased the growth rate of Micrococcus sp. MS-64K, but degradation was equal to optimal medium. Trlchloroethylene degradation by Micrococcus sp. MS-64K was shown to fit logarithmic model when the compound was added at initial concentration of 1, 000ppm.

  • PDF

황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리 (Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process)

  • 정혁성;응우옌 쿠엔 비엔;최재영;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권1호
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.

열적활성화된 과황산에 의한 염화페놀의 산화분해특성 연구 (A Study on Oxidative Degradation of Chlorophenols by Heat Activated Persulfate)

  • 손지민;권희원;황인성;김정진;김영훈
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.69-77
    • /
    • 2020
  • Oxidative degradation of phenol, three monochlorophenols (2-chlorophenol, 2-CP; 3-chlorophenol, 3-CP; 4-chlorophenol, 4-CP), four dichlorophenols (2,3-dichlorophenol, 2,3-DCP; 2,4-dichlorophenol, 2,4-DCP; 2,5-dichlorophenol, 2,5-DCP; 2,6-dichlorophenol, 2,6-DCP), and two trichlorophenols (2,4,5-trichlorophenol, 2,4,5-TCP; 2,4,6-trichlorophenol, 2,4,6-TCP) was conducted with heat activated persulfate. As the number of chlorinations increased, the reaction rate also increased. The reaction rate was relatively well fitted to the zero-order kinetic model, rather than the pseudo-first order kinetic model for the reactions at 60 ℃, which can be explained by insufficient activation of the persulfate at 60 ℃, and the oxidation reaction of 2,4,6-TCP at 70 ℃ was relatively well fitted to the pseudo-first order kinetic model. The oxidation reaction rate generally increased with increase of persulfate concentration in the solution. 2,6-dichloro-2,5-cyclohexadiene-1,4-dione was found as a degradation product in a GC/MS analysis. This compound is a non-aromatic compound, and one chlorine was removed. This result is similar to the result of previous studies. The current study proved that heat activated persulfate activation could be an alternative remediation technology for phenol and chlorophenols in soil and groundwater.