• Title/Summary/Keyword: phenazine

Search Result 80, Processing Time 0.024 seconds

Characterization of A cDNA encoding A Novel Phenazine Compound in Hot Pepper

  • Kim, Ukjo;Lee, Sang-Jik;Lee, Mi-Yeon;Park, Soon-Ho;Yang, Seung-Gyun;Harn, Chee-Hark
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.109.1-109
    • /
    • 2003
  • From the PMMV (pepper mild mottle virus)-inducible ESTs differentially expressed in Capsicum chinense PI257284, we isolated a full-length cDNA (CcPHZF: Capsicum chinense phenazine), encoding a phenazine biosynthesis protein which catalyzes the hydroxylation of phenozine-1-carboxylic acid to 2-hydroxyphenazine-1-carboxylic acid. Phenazine compound has been known to exhibit broad-spectrum of antibiotic activity against various species of bacteria and fungus. The entire region of CcPHZF is 879 bp in length and the open reading frame predicted a polypeptide of 292 amino acids. The homolog of CcPHZF is not Present in database except clones of AC004044 and NM100203 from Arabidopsis with 58 and 59%, respectively. Genomic Southern analysis indicated that the pepper genome contains a single copy of CcPHZF. The CcPHZF was strongly induced in the pepper leaves 3 days after PMMV treatment, when HR occurs on the leaf surface. Characterization of CcPHZF is underway to investigate if the CcPHZF is related to disease resistance against pathogens.

  • PDF

Synthesis and Antimicrobial Activity of Phenazine Derivatives -Synthesis and Antimicrobial Activity of 7- Substituted-2,3-dihydroxyphenazine-5,10-dioxides- (페나진 유도체의 합성과 항균성 -7-치환-2,3-디히드록시페나진-5,10-디옥시드류의 합성 및 항균성-)

  • Lee, Man-Kil;Kim, Ho-Sik;Han, Sung-Wook
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.440-448
    • /
    • 1992
  • 7-Substituted 2,3-dihydroxyphenazine 5,10-dioxides were synthesized by the reaction of 1,2,4-trihydroxybenzene with 6-substituted benzofuroxan derivatives which had been obtained from aniline derivativies bearing methoxy, methyl, acetyl and nitro group at the para position. 2,3-Dihydroxyphenazine 5,10-dioxide was also prepared by the reaction of 1,2,4-trihydroxybenzene with benzofuroxan. The antimicrobial activities of these phenazine dioxide were investigated in terms of minimum inhibitory concentration by the common twofold dilution technique. It was observed that the antimicrobial activity of the phenazine dioxides bearing electron releasing substituents was stronger than that of those bearing electron withdrawing substitutents. From this result, it was concluded that the antimicrobial activity of phenazine dioxide derivatives has a direct relationship with the electronic effect of the substituents.

  • PDF

Comparison of Binding Stoichiometry of [Ru(1,10-phenanthroline)2dipyrido [3,2-a:2',3'-c]phenazine]2+ and its Bis-derivative to DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Lee, Il-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3658-3662
    • /
    • 2010
  • A new bis-Ru(II) complex, in which two [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$ were tethered by a 1,3-bis(4-pyridyl)propane linker, was synthesized and its binding mode and stoichiometry to DNA was investigated by optical spectroscopy including linear dichroism (LD) and fluorescence intensity measurement. The magnitude of the negatively reduced LD signal of the bis-Ru(II) complex in the dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) ligand absorption region appeared to be similar compared to that in the DNA absorption region, which is considered to be a diagnostic for DPPZ ligand intercalation. The binding stoichiometry measured from its LD magnitude and enhanced fluorescence intensity corresponds to one ligand per three DNA bases, effectively violating the nearest neighbouring site exclusion model for classical DNA intercalation. This observation is in contrast with monomer analogue [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$, which is saturated at the DPPZ ligand to DNA base ratio of 0.25, or one DPPZ ligand per four nucleobases.

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Synthesis and Antimicrobial Properties of Surfactants Containing Phenazine Ring (Ⅰ) (Phenazine Ring을 가진 界面活性劑의 合成과 그 抗菌性 (제1보))

  • Jong Dae Kim;Yeong Hoon Park
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.199-205
    • /
    • 1981
  • 7-Alkyl-1-carboxyphenazine derivatives, bearing butyl or octyl group, were synthesize by the reaction of anthranilic acid with 3-nitroalkylbenzene, prepared from aniline and alcohols as starting materials through alkylation of 3-nitro-4-aminoalkylbenzene. And the products were also identified by elementary analysis, IR and NMR spectra. Surface tension of these derivatives in aqueous solution was determined. And also Antibiotic activity of these derivatives was tested, using Gram positive and negative bacillus and fungi. It showed that the antibiotic activity of these alkyl-substituted 1-carboxyphenazine derivatives was stronger than that of the 1-carboxyphenazine.

  • PDF

Synthesis of Adriamycin-related System (1) -Synthesis of the Derivative of Tetrahydrobenzo(b)phenazine as a Potential Isostere of Anthracyclinone- (아드리아마이신의 유사제제 합성 (1) -안트라싸이클리논의 Isostere 로서 Tetrahydrobenzo(b)phenazine 유도체의 합성-)

  • Jahng, Yurng-Dong;Chang, Sun-Young
    • YAKHAK HOEJI
    • /
    • v.34 no.4
    • /
    • pp.219-223
    • /
    • 1990
  • 7,8-Dihydro-6,11-dihydroxy-9(10H)benzo(b)phenazinone was prepared from 1,2,3,4-tetra-hydrophenazine as a potential isostere of anthracyclinone. The attempts to functionalize at $C_9$ were not successful due to the unstability of the above ketone.

  • PDF

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

Synthesis and Antimicrobial Properties of Surfactants Containing Phenazine Ring (III) (Phenazine Ring을 가진 界面活性劑의 合成과 그 抗菌性 (제3보))

  • Jong Dae Kim;Ho Sik Kim;Sung Wook Han
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.126-134
    • /
    • 1986
  • 7-Alkyl-2-aminophenazine-5,10-dioxides bearing butyl, hexyl and octyl group were synthesized by the reaction of 4-aminophenol with 6-alkylbenzofuroxans which had been obtained from aniline and n-alkyl alcohols. And 2-aminophenazine-5,10-dioxide was prepared by the reaction of 4-aminophenol with benzofuroxan. Infrared, nuclear magnetic resonance spectrophotometers, and elemental analyzer were employed to identify the products concerned with the synthetic processes. Surface tension of aqueous solutions of these phenazine derivatives was determined by surface tensiometer and it was found that the surface tension decreased with an increase of the number of carbon in the alkyl group. Antimicrobial activities were evaluated in terms of minimum inhibitory concentration by a dilution method. The butyl derivative showed the highest activity among these derivatives. It was observed that the antimicrobial activity of these alkyl substituted 2-aminophenazine-5,10-dioxides was stronger than that of 2-aminophenazine-5,10-dioxide.

  • PDF

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.