• 제목/요약/키워드: phases plane

검색결과 99건 처리시간 0.028초

AUTOMOTIVE FORMABILITY SIMULATION PROCESS FOR EARLY DESIGN PHASES

  • EL-SAYED J.;KIM H.;FRUTIGER R.;LIU W.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.277-283
    • /
    • 2005
  • Formability simulation of automotive panels at early design phases can reduce product and tooling development time and cost. However, for the simulation to be effective in leading the design process, fast and reliable results should be achieved with limited design definition and minimum modeling effort. In this paper, nonlinear finite element analysis is used to develop an automated process for the formability simulation of automotive body panels at early design phases. Due to the limited design definition at early design phases, the automated simulation process is based on the plane strain analysis for selected number of typical sections along the panel. Therefore, an entire panel can be analyzed with few sections. The state of plane strain can be easily induced, during simulation through symmetry and applied boundary conditions that simplify the modeling process. To study the reliability and effectiveness of the developed simulation process, the analytical results are compared with measured results of production automotive body side panels. The comparison demonstrates that the developed simulation process is reliable and can be effective for analyzing sheet metal formability, in early vehicle development phases.

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF

골프 클럽의 스윙궤도와 스윙면에 대한 고찰 (A Study on the Swing Path and Plane of the Club in Golf Swing)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.99-115
    • /
    • 2004
  • In order to Know the correct swing methods in golf swing it is important to understand the whole swing path but also the concept of swing plane. But, most amateur golfers don't Know the concept of swing plane well. Therefore this study was trying to make a good material that makes the concept of swing plane easy to understand. A good swing motion data was obtained from a professional golfer using the three-dimensional DLT method. This swing motion was divided into 10 phases and evaluated using the concept of swing plane. The result of the analyze show a good matches between the path of the club and swing plane. This result was summarized as a 3 dimensional graphics to provide a good material to teach the golf swing well.

홀로그래피 간섭계를 이용한 횡변위와 종변위의 동시 측정 (Simultaneous measurement of in-plane and out-of-plane displacement using holographic interferometry)

  • 김달우;임부빈
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.267-276
    • /
    • 1997
  • 서로 대칭되는 이중 조명을 이용한 홀로그래피 네파간섭계를 구성하여 횡변위와 종변위를 동시에 측정하였다. 물체파와 재생파의 간섭을 일으킨 후 위상이동법으로 변위위상도를 작성하였으며 최소제곱법맞춤으로 위상도의 잡음을 제거하였다. 이러한 방법으로 네파간섭계의 두 광로에 존재하는 위성의 차와 합에 대한 정보를 구하였으며, 파장 632.8 nm인 헬륨-네온 레이저 광선에 대하여 종변위와 횡변위는 각각 정밀도 .lambda./40 및 .lambda./100 이내로 측정되었다.

  • PDF

스텝 하중을 받는 얕은 EP쉘 구조물의 비선형 연속응답스펙트럼에 의한 불안정 특성 (Instability Characteristic of Nonlinear Running Spectra of Shallow EP Shells under STEP Excitations)

  • 김승덕;김두리
    • 한국공간구조학회논문집
    • /
    • 제10권1호
    • /
    • pp.119-126
    • /
    • 2010
  • 쉘형 구조물의 동적 불안정 문제를 다룬 연구결과는 다소 발표되고 있으나 위상곡면을 이용하여 카오스 생성에 관한 기본적 현상을 다룬 연구는 거의 없는 실정이다. 동적 비선형 문제에서 여러 가지 초기조건에 의해 불안정 현상이 민감하게 발생하는 이유를 파악하기 위해서는 위상곡면에서 끌개의 특성을 조사하여 동적 불안정 생성과정을 검토하는 일은 매우 중요하다. 본 연구에서는 얕은 EP 쉘이 스텝하중을 받을 때, 직접 좌굴과 간접 좌굴의 발생 경로를 파악하기 위하여 Galerkin 법에 의해 전개된 이산화 방정식을 구한다. 이를 수치해석 기법으로 위상곡선과 연속응답스펙트럼을 구해 동적 불안정 특성을 규명한다.

  • PDF

Optimal design of plane frame structures using artificial neural networks and ratio variables

  • Kao, Chin-Sheng;Yeh, I-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제52권4호
    • /
    • pp.739-753
    • /
    • 2014
  • There have been many packages that can be employed to analyze plane frames. However, because most structural analysis packages suffer from closeness of system, it is very difficult to integrate it with an optimization package. To overcome the difficulty, we proposed a possible alternative, DAMDO, which integrate Design, Analysis, Modeling, Definition, and Optimization phases into an integrative environment. The DAMDO methodology employs neural networks to integrate structural analysis package and optimization package so as not to need directly to integrate these two packages. The key problem of the DAMDO approach is how to generate a set of reasonable random designs in the first phase. According to the characteristics of optimized plane frames, we proposed the ratio variable approach to generate them. The empirical results show that the ratio variable approach can greatly improve the accuracy of the neural networks, and the plane frame optimization problems can be solved by the DAMDO methodology.

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.

회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석 (PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.

2D PIV와 stereoscopic PIV 기법으로 측정한 프로펠러 후류의 속도장 비교 연구 (Comparison of Velocity Fields of Wake behind a Propeller Using 2D PIV and stereoscopic PIV)

  • 백부근;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2002
  • The phase-averaged velocity fields of 3 dimensional turbulent wake behind a marine propeller measured by 2D PIV and stereoscopic PIV(SPIV) were compared directly. In-plane velocity fields obtained from the consecutive particle images captured by one camera in 2D PIV have perspective errors due to out-of-plane motion. However, the perspective errors can be removed by measuring three component velocity fields using SPIV method with two cameras. It is also necessary to measure three components velocity fields for the investigation of complicated near-wake behind the propeller for the suitable propeller design. 400 instantaneous velocity fields were measured for each of four different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}C\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the downstream region. The phase-averaged velocity fields show the viscous wake developed along the blade surfaces and tip vortices were formed periodically. The perspective errors caused by the out-of-plane motion was estimated by the comparison of 2D PIV and SPIV results. The difference in the axial mean velocity fields measured by both techniques are nearly proportional to the mean out-of-plane velocity component which has large values in the regions of the tip and trailing vortices. The axial turbulence intensity measured by 2D PIV was overestimated since the out-of-plane velocity fluctuations influence the in-plane velocity vectors and increase the in-plane turbulence intensities.

  • PDF

Nutrient Intake and Utilization by Range Managed Sheep in Critical Physiological Stages Maintained on Grazing with Concentrate Supplementation in a Hot Semi-Arid Environment

  • Karim, S.A.;Santra, A.;Sharma, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권9호
    • /
    • pp.1228-1234
    • /
    • 2000
  • The reported study was conducted on range managed Malpura ewes that were non-breeding empty, were at an advanced stage of pregnancy, and were in early lactation, under a protocol of free grazing with concentrate supplementation at 1.00, 1.25 and 1.50% of their body weight to assess their plane of nutrition and nutrient intake. The biomass yield of pasture plots was 1689, 1820 and 2912 kg/ha in pregnancy, lactation and empty phases, respectively. In addition to natural shrubs and forbs, Cenchrus ciliaris (36.4%) and dead litter (31.6%) were the major component of pasture vegetation during pregnancy. The dead litter disappeared during the lactation and empty phase with a concomitant increase in distribution of Cenchrus ciliaris to 73.0 and 87.2% respectively. The daily dry matter consumption from supplemental concentrate and free grazing was 70.1, 57.3 and 63.5 g/kg $W^{0.75}/d$ with concentrate to roughage ratio of 40:60, 47:53 and 33:67 in pregnancy, lactation and empty phases respectively. Digestibility of DM and OM were similar in the three phases while CP digestibility was higher (p<0.0l) during lactation than other two phases. Digestibility of NDF, ADF and cellulose were higher (p<0.0l) in empty than pregnancy and lactation, while hemicellulose digestibility was similar in lactation and empty and lower in pregnancy phase. The ewes in ~hases of pregnancy, lactation and empty consumed 7.1, 7.7 and 6.1 g DCP and 197.2, 214.6 and 232.5 kcal DE/kg $W^{0.75}/d$ respectively. It is concluded that ewes maintained on semi-arid Cenchrus dominated pasture with concentrate supplementation during pregnancy, lactation and empty phases consumed 45.2, 45.1 and 35.2 g DCP/Mcal ME respectively.