• Title/Summary/Keyword: phased conversion

Search Result 15, Processing Time 0.023 seconds

The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board (축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.638-643
    • /
    • 2012
  • This paper presents an intelligent reduction method for external noise. The main idea comes from PSO-FCM (Particle Swam Optimization Fused fuzzy C-Means) clustering. The data of the target is transformed from the antenna coordinates to the vessel one and to the system coordinates. In the conversion, the overall noises hinder observer to get the exact position and velocity of the maneuvering target. While the filter is used for tracking system, unexpected acceleration becomes the main factor which makes the uncertainty. In this paper, the tracking efficiency is improved with the PSO-FCM and the compensation methodology. The acceleration is approximated from the external noise splitted by the proposed clustering method. After extracting the approximated acceleration, the rest in the noise is filtered by the filter and the compensation is added to after that. Proposed tracking method is applicable to the linear model and nonlinear one together. Also, it can do to the on-line system. Finally, some examples are provided to examine the reliability of the proposed method.

Fabrication of Phased Array EMAT and Its Characteristics (위상배열 EMAT의 제작 및 특성 평가)

  • Ahn, Bong-Young;Cho, Seung-Hyun;Kim, Young-Joo;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2010
  • EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively.

Design and Measurement of Active Phased Array Radar Digital Receiver (능동 위상 배열 레이더의 디지털 수신기 제작 및 측정)

  • Kim, Tae-Hwan;Lee, Sung-Ju;Lee, Dong-Hwi;Hong, Yun-Seok;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.371-379
    • /
    • 2011
  • Active phased array antenna structure is used for modern multi-function radars. To search targets in high clutter environment, the radar receiver needs high dynamic range performance. Though active phased array antenna structure lead to increase of SNR, the SFDR is not increased. In this paper, high SFDR receiver of X-band active phased array radar was designed and manufactured. One channel digital receiver is connected to 32 T/R modules and one PCB assembly is composed to 2 channel digital receivers with RF part, ADC part, LO distribution part and digital down conversion part. A commercial FIFO board was used for digital receiver measurement about major performance in digital output signal condition. The measured digital receiver gain and SFDR is 33 dB and more than 81 dBc each.

The study on high speed A/D conversion implementation employing I/Q compensating algorithm for 3-D radar signal processor (I/Q 보정기능을 갖는 3차원 레이더 신호처리기용 고속 A/D 변환 기법 연구)

  • 조명제;김수중
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.67-76
    • /
    • 1997
  • In radar signal processing, an A/D converter with sufficient dynamic range and high sampling speed is required to detect the weakest target signals in heavy clutter and ECM environments. As the sampling frequency increases, the amount of digital data transfered to the signal processing module is also increased. To overcome these massive data transfer burden, we need an A/D conversion module with an enough data transfer rate. In this paper, we proposed an implementation scheme of a new A/D conversio module that can be used in multi-mode 3-D phased array radar signal processing system, and evaluated the performance. The proposed A/D conversion module is implemented with a standard A/D converter and a 6U-standard VME bus.

  • PDF

26GHz 40nm CMOS Wideband Variable Gain Amplifier Design for Automotive Radar (차량용 레이더를 위한 26GHz 40nm CMOS 광대역 가변 이득 증폭기 설계)

  • Choi, Han-Woong;Choi, Sun-Kyu;Lee, Eun-Gyu;Lee, Jae-Eun;Lim, Jeong-Taek;Lee, Kyeong-Kyeok;Song, Jae-Hyeok;Kim, Sang-Hyo;Kim, Choul-Young
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.408-412
    • /
    • 2018
  • In this paper, a 26GHz variable gain amplifier fabricated using a 40nm CMOS process is studied. In the case of an automobile radar using 79 GHz, it is advantageous in designing and driving to drive down to a low frequency band or to use a low frequency band before up conversion rather than designing and matching the entire circuit to 79 GHz in terms of frequency characteristics. In the case of a Phased Array System that uses time delay through TTD (True Time Delay) in practice, down conversion to a lower frequency is advantageous in realizing a real time delay and reducing errors. For a VGA (Variable Gain Amplifier) operating in the 26GHz frequency band that is 1/3 of the frequency of 79GHz, VDD : 1V, Bias 0.95V, S11 is designed to be <-9.8dB (Mea. High gain mode) and S22 < (Mea. high gain mode), Gain: 2.69dB (Mea. high gain mode), and P1dB: -15 dBm (Mea. high gain mode). In low gain mode, S11 is <-3.3dB (Mea. Low gain mode), S22 <-8.6dB (Mea. low gain mode), Gain: 0dB (Mea. low gain mode), P1dB: -21dBm (Mea. Low gain mode).

Development of Grid Connection Type Inverter for 30kW Wind Power Generation System (30kW급 발전시스템의 계통 연계형 인버터 개발)

  • Hahm, Nyeon-Kun;Kang, Seung-Ook;Kim, Yong-Joo;Han, Kyong-Hee;Ahn, Gyu-Bok;Song, Seung-Ho;Kim, Dong-Yong;Rho, Do-Hwan;Oh, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.990-992
    • /
    • 2002
  • 30kW electrical power conversion system is delveloped for the variable speed wind turbine system. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and frequency of generator output vary according to the wind speed, a dc/dc boosting chopper is utilized to maintain constant dc link voltage. Grid connection type PWM inverter supply currents into the utility line by regulating the dc link voltage. The active power is controlled by q-axis current which the reactive power can be controlled by d-axis current reference change. The phase angle of utility voltage is detected using s/w PLL(Phased Locked Loop) in d-q synchronous reference frame. This scheme gives a low cost power solution for variable speed WECS.

  • PDF

Analysis of the Case of the Rehabilitation Quarrying After Using Quarrying Site (채석 완료 후 부지 활용성을 고려한 복구사례 분석)

  • Park, Jae-Hyeon;Lee, Joon-Woo;Park, Chong-Min
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.152-162
    • /
    • 2010
  • This study provides preliminary data to support the need for appropriate and thorough restoration of quarries through investigating both domestic and overseas cases of sites that were restored in environment-friendly ways to make them re-usable after extraction. In cases of areas where it is difficult to restore the cut slope, putting it to other uses such as engraving buddhist images would be helpful to reduce the restoration cost and enhance the utilization of the slope. Phased land use conversion after exploitation needs to be considered in advance; for example, the location and size of the quarry should be determined according to the pre-planned use or development of the site. Considering the circumstances in the country, serious consideration should be given to methods that allow the restoration or recovery of the damaged sites to be completed in short periods of time. Quarry restoration needs to be approached from the view of ecological restoration and if a site is deemed to be usable for another purpose, land use conversion should be considered to enhance the utilization.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

Phased Array Antenna Using Active Device

  • Seo, Chul-Hun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.306-309
    • /
    • 2004
  • This paper presents a new active antenna consisting of a microstrip patch for the passive radiator, a mixer for frequency conversion, a voltage controlled oscillator (VCO) and a phase detector for phase control. The microwave signal frequency has been converted into intermediate frequency (IF) on the antenna elements by the mixer. The active antenna consists of two ports, the IF port has a transmitted IF signal via power combined to the baseband and the dc control port is under the control of the phase-detector. The input voltage of the VCO is controlled by the phase detector. The scan range of the array is determined by the phase detector and the VCO and is obtained between 30$^{\circ}$ and - 30$^{\circ}$