• 제목/요약/키워드: phase-contrast microscopy image

검색결과 17건 처리시간 0.023초

위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류 (Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor)

  • 강미선;이정엄;김혜련;김명희
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권4호
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

DLC코팅 마모면에 대한 원자력 현미경을 이용한 고찰 (An Investigation of Worn DLC Coatings Using Atomic Force Microscopy)

  • 안효석;조경만
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.138-143
    • /
    • 2002
  • Abstract - Tribofilms formed on won surface protect the DLC coating surface and decrease the fiction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic farce microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

DLC 코팅 마모면에 대한 원자력 현미경을 이용한 고찰 (An investigation of worn DLC coatings using atomic force microscopy)

  • 조경만;안효석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.299-304
    • /
    • 2001
  • Tribofilms formed on worn surface protect the DLC coating surface and decrease the friction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic force microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

  • PDF

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Finite Step Method for the Constrained Optimization Problem in Phase Contrast Microscopic Image Restoration

  • Adiya, Enkhbolor;Yadam, Bazarsad;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • 제1권1호
    • /
    • pp.87-93
    • /
    • 2014
  • The aim of microscopic image restoration is to recover the image by applying the inverse process of degradation, and the results facilitate automated and improved analysis of the image. In this work, we consider the problem of image restoration as a minimization problem of convex cost function, which consists of a least-squares fitting term and regularization terms with non-negative constraints. The finite step method is proposed to solve this constrained convex optimization problem. We demonstrate the convergence of this method. Efficiency and restoration capability of the proposed method were tested and illustrated through numerical experiments.

  • PDF

HRTEM영상 분석에 대한 IWFR 방법의 고찰 및 응용 (A Review of IWFR Method for HRTEM Image Analysis and Application)

  • 김황수
    • Applied Microscopy
    • /
    • 제38권1호
    • /
    • pp.63-72
    • /
    • 2008
  • Allen et al. (2004)에 의해 개발된 IWFR 방법에 대해서 응용성에 관심을 가지고 고찰되었다. 이 고찰에는 문헌에 보고된 GaAs, $YBa_2CuO_7$$Al_2CuMg$의 재료에 대한 HRTEM 연구물들이 이용되었다. 이 고찰 과정에서 이 방법의 타당성에 대한 이론적 근거, 제한조건 및 정보한계들을 명확히 제시되었다. IWFR 방법을 통해 얻은 결정 밑 표면에 전자 파동함수의 상(phase)-영상은 구면수차에 의한 영상 왜곡이 교정된 정보한계 범위 내에서 원자분해상을 나타낼 뿐만 아니라 결정의 구성원자의 원자번호에 대체적으로 비례하는 강도 분포를 나타내는 강한 경향이 있음이 특히 주목되었다.

How to Detect Viscoelastic Properties of Polymeric Materials by Dynamic Atomic Force Microscopy

  • Nakajima, Ken;Fujinami, So;Nishi, Toshio
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.346-346
    • /
    • 2006
  • Several types of dynamic atomic force microscopy such as tapping-mode, force modulation-mode are commonly cooperated by phase-contrast imaging techniques, which were interpreted as elastic contrast by mistake in the past and are nowadays regarded as the representation of energy dissipative processes. However, as theoretically reported, the situation is not so simple when the strong adhesive interaction is involved. Furthermore, elastic and viscous contributions are not easily divided in the case of polymeric systems. Thus, the interpretation of image contrast for them must be very carefully treated. In this study, we will demonstrate how such contrast mechanisms are complicated, using several miscible and immiscible polymer blend systems as model samples.

  • PDF

Slow Feature Analysis for Mitotic Event Recognition

  • Chu, Jinghui;Liang, Hailan;Tong, Zheng;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1670-1683
    • /
    • 2017
  • Mitotic event recognition is a crucial and challenging task in biomedical applications. In this paper, we introduce the slow feature analysis and propose a fully-automated mitotic event recognition method for cell populations imaged with time-lapse phase contrast microscopy. The method includes three steps. First, a candidate sequence extraction method is utilized to exclude most of the sequences not containing mitosis. Next, slow feature is learned from the candidate sequences using slow feature analysis. Finally, a hidden conditional random field (HCRF) model is applied for the classification of the sequences. We use a supervised SFA learning strategy to learn the slow feature function because the strategy brings image content and discriminative information together to get a better encoding. Besides, the HCRF model is more suitable to describe the temporal structure of image sequences than nonsequential SVM approaches. In our experiment, the proposed recognition method achieved 0.93 area under curve (AUC) and 91% accuracy on a very challenging phase contrast microscopy dataset named C2C12.

석면섬유 자동계수를 위한 고효율 현미경법의 영상처리 알고리즘 개선 (Improvement of Image Processing Algorithm of High-Throughput Microscopy for Automated Counting of Asbestos Fibers)

  • 조명옥;윤성희;한화택;김중경
    • 한국가시화정보학회지
    • /
    • 제13권3호
    • /
    • pp.15-19
    • /
    • 2015
  • We developed a high-throughput microscopy (HTM) method which enabled us to replace a conventional phase contrast microscopy (PCM) method that has been used as a standard analytical method for airborne asbestos. We could obtain the concentration of airborne asbestos fibers under detection limit by automated image processing and analysis using HTM method. Here we propose an improved image processing algorithm with variable parameters to enhance the accuracy of the HTM analysis. Since the variable parameters that compensate the difference of the brightness are applied to the individual images in our new image processing method, it is possible to enhance the accuracy of the automatic image analysis method for sample slides with low asbestos concentration that caused errors in binary image processing. We demonstrated that enumeration of fibers by improved image processing algorithm remarkably enhanced the accuracy of HTM analysis in comparison with PCM. The improved HTM method can be a potential alternative to conventional PCM.

Phase Imaging of Worn Surface of TiN Coating and Interpretation by Force Spectroscopy

  • Hyo Sok;Chizhik, S-A;I Luzinov
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.69-75
    • /
    • 2000
  • The paper compares topography, phase contrast and force spectroscopy in atomic force microscopy data for evaluating the microheterogeneity of surface layer. The worn surface of ion-plated TiN coating was measured using both a laboratory-built and a commercial AFM. The results of analysis revealed structural and micromechanical heterogeneity of the worn surfaces. We demonstrated that the phase image allows relatively qualitative estimation of elastic modulus of the sample surface. The tribolayer formed in the worn surface possessed much lower stiffness than the original coating. It is shown that the most stable phase imaging is provided with a stiff cantilever. In this case, phase contrast is well conditioned, first of all, by microheterogeneity of elastic properties of the investigated surfaces. In this study an attempt was also made to correlate the results of phase imaging with that of the farce spectroscopy. The joint analysis of information on the surface properties obtained by the phase imaging and quantitative data measured with the force spectroscopy methods allows a better understanding of the nature of the surface micromechanical heterogeneity.

  • PDF